Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\frac{5}{4}\right)^{2}x^{2}+9^{2}
Expand \left(\frac{5}{4}x\right)^{2}.
x^{2}=\frac{25}{16}x^{2}+9^{2}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
x^{2}=\frac{25}{16}x^{2}+81
Calculate 9 to the power of 2 and get 81.
x^{2}-\frac{25}{16}x^{2}=81
Subtract \frac{25}{16}x^{2} from both sides.
-\frac{9}{16}x^{2}=81
Combine x^{2} and -\frac{25}{16}x^{2} to get -\frac{9}{16}x^{2}.
x^{2}=81\left(-\frac{16}{9}\right)
Multiply both sides by -\frac{16}{9}, the reciprocal of -\frac{9}{16}.
x^{2}=-144
Multiply 81 and -\frac{16}{9} to get -144.
x=12i x=-12i
The equation is now solved.
x^{2}=\left(\frac{5}{4}\right)^{2}x^{2}+9^{2}
Expand \left(\frac{5}{4}x\right)^{2}.
x^{2}=\frac{25}{16}x^{2}+9^{2}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
x^{2}=\frac{25}{16}x^{2}+81
Calculate 9 to the power of 2 and get 81.
x^{2}-\frac{25}{16}x^{2}=81
Subtract \frac{25}{16}x^{2} from both sides.
-\frac{9}{16}x^{2}=81
Combine x^{2} and -\frac{25}{16}x^{2} to get -\frac{9}{16}x^{2}.
-\frac{9}{16}x^{2}-81=0
Subtract 81 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{16}\right)\left(-81\right)}}{2\left(-\frac{9}{16}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{9}{16} for a, 0 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{9}{16}\right)\left(-81\right)}}{2\left(-\frac{9}{16}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{9}{4}\left(-81\right)}}{2\left(-\frac{9}{16}\right)}
Multiply -4 times -\frac{9}{16}.
x=\frac{0±\sqrt{-\frac{729}{4}}}{2\left(-\frac{9}{16}\right)}
Multiply \frac{9}{4} times -81.
x=\frac{0±\frac{27}{2}i}{2\left(-\frac{9}{16}\right)}
Take the square root of -\frac{729}{4}.
x=\frac{0±\frac{27}{2}i}{-\frac{9}{8}}
Multiply 2 times -\frac{9}{16}.
x=-12i
Now solve the equation x=\frac{0±\frac{27}{2}i}{-\frac{9}{8}} when ± is plus.
x=12i
Now solve the equation x=\frac{0±\frac{27}{2}i}{-\frac{9}{8}} when ± is minus.
x=-12i x=12i
The equation is now solved.