Solve for x
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
x^{2}=16-8x+x^{2}+\left(2\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
x^{2}=16-8x+x^{2}+2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
x^{2}=16-8x+x^{2}+4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}=16-8x+x^{2}+4\times 3
The square of \sqrt{3} is 3.
x^{2}=16-8x+x^{2}+12
Multiply 4 and 3 to get 12.
x^{2}=28-8x+x^{2}
Add 16 and 12 to get 28.
x^{2}+8x=28+x^{2}
Add 8x to both sides.
x^{2}+8x-x^{2}=28
Subtract x^{2} from both sides.
8x=28
Combine x^{2} and -x^{2} to get 0.
x=\frac{28}{8}
Divide both sides by 8.
x=\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}