Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Add 4 and 5 to get 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Add 4 and 5 to get 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Add 9 and 9 to get 18.
x^{2}=18
Combine 4\sqrt{5} and -4\sqrt{5} to get 0.
x=3\sqrt{2} x=-3\sqrt{2}
Take the square root of both sides of the equation.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Add 4 and 5 to get 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Add 4 and 5 to get 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Add 9 and 9 to get 18.
x^{2}=18
Combine 4\sqrt{5} and -4\sqrt{5} to get 0.
x^{2}-18=0
Subtract 18 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
Square 0.
x=\frac{0±\sqrt{72}}{2}
Multiply -4 times -18.
x=\frac{0±6\sqrt{2}}{2}
Take the square root of 72.
x=3\sqrt{2}
Now solve the equation x=\frac{0±6\sqrt{2}}{2} when ± is plus.
x=-3\sqrt{2}
Now solve the equation x=\frac{0±6\sqrt{2}}{2} when ± is minus.
x=3\sqrt{2} x=-3\sqrt{2}
The equation is now solved.