Solve for x
x=3\sqrt{2}\approx 4.242640687
x=-3\sqrt{2}\approx -4.242640687
Graph
Quiz
Algebra
5 problems similar to:
x ^ { 2 } = ( 2 + \sqrt { 5 } ) ^ { 2 } + ( 2 - \sqrt { 5 } ) ^ { 2 }
Share
Copied to clipboard
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Add 4 and 5 to get 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Add 4 and 5 to get 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Add 9 and 9 to get 18.
x^{2}=18
Combine 4\sqrt{5} and -4\sqrt{5} to get 0.
x=3\sqrt{2} x=-3\sqrt{2}
Take the square root of both sides of the equation.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Add 4 and 5 to get 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
The square of \sqrt{5} is 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Add 4 and 5 to get 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Add 9 and 9 to get 18.
x^{2}=18
Combine 4\sqrt{5} and -4\sqrt{5} to get 0.
x^{2}-18=0
Subtract 18 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
Square 0.
x=\frac{0±\sqrt{72}}{2}
Multiply -4 times -18.
x=\frac{0±6\sqrt{2}}{2}
Take the square root of 72.
x=3\sqrt{2}
Now solve the equation x=\frac{0±6\sqrt{2}}{2} when ± is plus.
x=-3\sqrt{2}
Now solve the equation x=\frac{0±6\sqrt{2}}{2} when ± is minus.
x=3\sqrt{2} x=-3\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}