Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=40x-75-4x^{2}
Use the distributive property to multiply 15-2x by 2x-5 and combine like terms.
x^{2}-40x=-75-4x^{2}
Subtract 40x from both sides.
x^{2}-40x-\left(-75\right)=-4x^{2}
Subtract -75 from both sides.
x^{2}-40x+75=-4x^{2}
The opposite of -75 is 75.
x^{2}-40x+75+4x^{2}=0
Add 4x^{2} to both sides.
5x^{2}-40x+75=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
x^{2}-8x+15=0
Divide both sides by 5.
a+b=-8 ab=1\times 15=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-15 -3,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 15.
-1-15=-16 -3-5=-8
Calculate the sum for each pair.
a=-5 b=-3
The solution is the pair that gives sum -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Rewrite x^{2}-8x+15 as \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Factor out x in the first and -3 in the second group.
\left(x-5\right)\left(x-3\right)
Factor out common term x-5 by using distributive property.
x=5 x=3
To find equation solutions, solve x-5=0 and x-3=0.
x^{2}=40x-75-4x^{2}
Use the distributive property to multiply 15-2x by 2x-5 and combine like terms.
x^{2}-40x=-75-4x^{2}
Subtract 40x from both sides.
x^{2}-40x-\left(-75\right)=-4x^{2}
Subtract -75 from both sides.
x^{2}-40x+75=-4x^{2}
The opposite of -75 is 75.
x^{2}-40x+75+4x^{2}=0
Add 4x^{2} to both sides.
5x^{2}-40x+75=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 75}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -40 for b, and 75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 75}}{2\times 5}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 75}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-40\right)±\sqrt{1600-1500}}{2\times 5}
Multiply -20 times 75.
x=\frac{-\left(-40\right)±\sqrt{100}}{2\times 5}
Add 1600 to -1500.
x=\frac{-\left(-40\right)±10}{2\times 5}
Take the square root of 100.
x=\frac{40±10}{2\times 5}
The opposite of -40 is 40.
x=\frac{40±10}{10}
Multiply 2 times 5.
x=\frac{50}{10}
Now solve the equation x=\frac{40±10}{10} when ± is plus. Add 40 to 10.
x=5
Divide 50 by 10.
x=\frac{30}{10}
Now solve the equation x=\frac{40±10}{10} when ± is minus. Subtract 10 from 40.
x=3
Divide 30 by 10.
x=5 x=3
The equation is now solved.
x^{2}=40x-75-4x^{2}
Use the distributive property to multiply 15-2x by 2x-5 and combine like terms.
x^{2}-40x=-75-4x^{2}
Subtract 40x from both sides.
x^{2}-40x+4x^{2}=-75
Add 4x^{2} to both sides.
5x^{2}-40x=-75
Combine x^{2} and 4x^{2} to get 5x^{2}.
\frac{5x^{2}-40x}{5}=-\frac{75}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{75}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-8x=-\frac{75}{5}
Divide -40 by 5.
x^{2}-8x=-15
Divide -75 by 5.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-15+16
Square -4.
x^{2}-8x+16=1
Add -15 to 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-4=1 x-4=-1
Simplify.
x=5 x=3
Add 4 to both sides of the equation.