Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

x^{2}=\left(\frac{2\sqrt{6}r}{3}\right)^{2}-2\times \frac{2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2\sqrt{6}r}{3}-x\right)^{2}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}-2\times \frac{2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To raise \frac{2\sqrt{6}r}{3} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Express -2\times \frac{2\sqrt{6}r}{3} as a single fraction.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Express \frac{-2\times 2\sqrt{6}r}{3}x as a single fraction.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{9}+\frac{3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-2\times 2\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Since \frac{\left(2\sqrt{6}r\right)^{2}}{9} and \frac{3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+\frac{x^{2}\times 3^{2}}{3^{2}}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3^{2}}{3^{2}}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Since \frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}} and \frac{x^{2}\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Multiply -2 and 2 to get -4.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
To raise \frac{2\sqrt{3}r}{3} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{9}+\frac{3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-4\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}+3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
Since \frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{9} and \frac{3\left(-4\right)\sqrt{6}rx}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}+\left(2\sqrt{3}r\right)^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}
Since \frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}} and \frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3^{2} is 9. Multiply \frac{-4\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Since \frac{3\left(-4\right)\sqrt{6}rx}{9} and \frac{\left(2\sqrt{3}r\right)^{2}}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{2^{2}\left(\sqrt{6}\right)^{2}r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Expand \left(2\sqrt{6}r\right)^{2}.
x^{2}=\frac{4\left(\sqrt{6}\right)^{2}r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{4\times 6r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
The square of \sqrt{6} is 6.
x^{2}=\frac{24r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Multiply 4 and 6 to get 24.
x^{2}=\frac{24r^{2}+x^{2}\times 9}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{24r^{2}+x^{2}\times 9}{9}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Divide each term of 24r^{2}+x^{2}\times 9 by 9 to get \frac{8}{3}r^{2}+x^{2}.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Multiply 3 and -4 to get -12.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+2^{2}\left(\sqrt{3}\right)^{2}r^{2}}{9}
Expand \left(2\sqrt{3}r\right)^{2}.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+4\left(\sqrt{3}\right)^{2}r^{2}}{9}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+4\times 3r^{2}}{9}
The square of \sqrt{3} is 3.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Multiply 4 and 3 to get 12.
x^{2}-x^{2}=\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Subtract x^{2} from both sides.
0=\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Combine x^{2} and -x^{2} to get 0.
\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}=0
Swap sides so that all variable terms are on the left hand side.
\frac{-12\sqrt{6}rx+12r^{2}}{9}=-\frac{8}{3}r^{2}
Subtract \frac{8}{3}r^{2} from both sides. Anything subtracted from zero gives its negation.
-12\sqrt{6}rx+12r^{2}=-24r^{2}
Multiply both sides of the equation by 9, the least common multiple of 9,3.
-12\sqrt{6}rx=-24r^{2}-12r^{2}
Subtract 12r^{2} from both sides.
-12\sqrt{6}rx=-36r^{2}
Combine -24r^{2} and -12r^{2} to get -36r^{2}.
\left(-12\sqrt{6}r\right)x=-36r^{2}
The equation is in standard form.
\frac{\left(-12\sqrt{6}r\right)x}{-12\sqrt{6}r}=-\frac{36r^{2}}{-12\sqrt{6}r}
Divide both sides by -12\sqrt{6}r.
x=-\frac{36r^{2}}{-12\sqrt{6}r}
Dividing by -12\sqrt{6}r undoes the multiplication by -12\sqrt{6}r.
x=\frac{\sqrt{6}r}{2}
Divide -36r^{2} by -12\sqrt{6}r.
x^{2}=\left(\frac{2\sqrt{6}r}{3}\right)^{2}-2\times \frac{2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2\sqrt{6}r}{3}-x\right)^{2}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}-2\times \frac{2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To raise \frac{2\sqrt{6}r}{3} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}r}{3}x+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Express -2\times \frac{2\sqrt{6}r}{3} as a single fraction.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Express \frac{-2\times 2\sqrt{6}r}{3}x as a single fraction.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{9}+\frac{3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-2\times 2\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9}+x^{2}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Since \frac{\left(2\sqrt{6}r\right)^{2}}{9} and \frac{3\left(-1\right)\times 2\times 2\sqrt{6}rx}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+\frac{x^{2}\times 3^{2}}{3^{2}}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3^{2}}{3^{2}}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-2\times 2\sqrt{6}rx}{3}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Since \frac{\left(2\sqrt{6}r\right)^{2}}{3^{2}} and \frac{x^{2}\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}+\left(\frac{2\sqrt{3}r}{3}\right)^{2}
Multiply -2 and 2 to get -4.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
To raise \frac{2\sqrt{3}r}{3} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{9}+\frac{3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-4\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}+3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}}
Since \frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{9} and \frac{3\left(-4\right)\sqrt{6}rx}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}+\left(2\sqrt{3}r\right)^{2}}{3^{2}}+\frac{-4\sqrt{6}rx}{3}
Since \frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}} and \frac{\left(2\sqrt{3}r\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx}{9}+\frac{\left(2\sqrt{3}r\right)^{2}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3^{2} is 9. Multiply \frac{-4\sqrt{6}rx}{3} times \frac{3}{3}.
x^{2}=\frac{\left(2\sqrt{6}r\right)^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Since \frac{3\left(-4\right)\sqrt{6}rx}{9} and \frac{\left(2\sqrt{3}r\right)^{2}}{9} have the same denominator, add them by adding their numerators.
x^{2}=\frac{2^{2}\left(\sqrt{6}\right)^{2}r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Expand \left(2\sqrt{6}r\right)^{2}.
x^{2}=\frac{4\left(\sqrt{6}\right)^{2}r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{4\times 6r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
The square of \sqrt{6} is 6.
x^{2}=\frac{24r^{2}+x^{2}\times 3^{2}}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Multiply 4 and 6 to get 24.
x^{2}=\frac{24r^{2}+x^{2}\times 9}{3^{2}}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{24r^{2}+x^{2}\times 9}{9}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{3\left(-4\right)\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Divide each term of 24r^{2}+x^{2}\times 9 by 9 to get \frac{8}{3}r^{2}+x^{2}.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+\left(2\sqrt{3}r\right)^{2}}{9}
Multiply 3 and -4 to get -12.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+2^{2}\left(\sqrt{3}\right)^{2}r^{2}}{9}
Expand \left(2\sqrt{3}r\right)^{2}.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+4\left(\sqrt{3}\right)^{2}r^{2}}{9}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+4\times 3r^{2}}{9}
The square of \sqrt{3} is 3.
x^{2}=\frac{8}{3}r^{2}+x^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Multiply 4 and 3 to get 12.
x^{2}-x^{2}=\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Subtract x^{2} from both sides.
0=\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}
Combine x^{2} and -x^{2} to get 0.
\frac{8}{3}r^{2}+\frac{-12\sqrt{6}rx+12r^{2}}{9}=0
Swap sides so that all variable terms are on the left hand side.
\frac{-12\sqrt{6}rx+12r^{2}}{9}=-\frac{8}{3}r^{2}
Subtract \frac{8}{3}r^{2} from both sides. Anything subtracted from zero gives its negation.
-12\sqrt{6}rx+12r^{2}=-24r^{2}
Multiply both sides of the equation by 9, the least common multiple of 9,3.
-12\sqrt{6}rx=-24r^{2}-12r^{2}
Subtract 12r^{2} from both sides.
-12\sqrt{6}rx=-36r^{2}
Combine -24r^{2} and -12r^{2} to get -36r^{2}.
\left(-12\sqrt{6}r\right)x=-36r^{2}
The equation is in standard form.
\frac{\left(-12\sqrt{6}r\right)x}{-12\sqrt{6}r}=-\frac{36r^{2}}{-12\sqrt{6}r}
Divide both sides by -12\sqrt{6}r.
x=-\frac{36r^{2}}{-12\sqrt{6}r}
Dividing by -12\sqrt{6}r undoes the multiplication by -12\sqrt{6}r.
x=\frac{\sqrt{6}r}{2}
Divide -36r^{2} by -12\sqrt{6}r.