Solve for x
x = \frac{\sqrt{2 {(\sqrt{201} - 1)}}}{2} \approx 2.56685088
x = -\frac{\sqrt{2 {(\sqrt{201} - 1)}}}{2} \approx -2.56685088
Graph
Share
Copied to clipboard
\left(x^{2}\right)^{2}=\left(\sqrt{50-x^{2}}\right)^{2}
Square both sides of the equation.
x^{4}=\left(\sqrt{50-x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}=50-x^{2}
Calculate \sqrt{50-x^{2}} to the power of 2 and get 50-x^{2}.
x^{4}-50=-x^{2}
Subtract 50 from both sides.
x^{4}-50+x^{2}=0
Add x^{2} to both sides.
t^{2}+t-50=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-50\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -50 for c in the quadratic formula.
t=\frac{-1±\sqrt{201}}{2}
Do the calculations.
t=\frac{\sqrt{201}-1}{2} t=\frac{-\sqrt{201}-1}{2}
Solve the equation t=\frac{-1±\sqrt{201}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{201}-2}}{2} x=-\frac{\sqrt{2\sqrt{201}-2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\left(\frac{\sqrt{2\sqrt{201}-2}}{2}\right)^{2}=\sqrt{50-\left(\frac{\sqrt{2\sqrt{201}-2}}{2}\right)^{2}}
Substitute \frac{\sqrt{2\sqrt{201}-2}}{2} for x in the equation x^{2}=\sqrt{50-x^{2}}.
\frac{1}{2}\times 201^{\frac{1}{2}}-\frac{1}{2}=\frac{1}{2}\times 201^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=\frac{\sqrt{2\sqrt{201}-2}}{2} satisfies the equation.
\left(-\frac{\sqrt{2\sqrt{201}-2}}{2}\right)^{2}=\sqrt{50-\left(-\frac{\sqrt{2\sqrt{201}-2}}{2}\right)^{2}}
Substitute -\frac{\sqrt{2\sqrt{201}-2}}{2} for x in the equation x^{2}=\sqrt{50-x^{2}}.
\frac{1}{2}\times 201^{\frac{1}{2}}-\frac{1}{2}=\frac{1}{2}\times 201^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=-\frac{\sqrt{2\sqrt{201}-2}}{2} satisfies the equation.
x=\frac{\sqrt{2\sqrt{201}-2}}{2} x=-\frac{\sqrt{2\sqrt{201}-2}}{2}
List all solutions of x^{2}=\sqrt{50-x^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}