Solve for x
x = \frac{\sqrt{30}}{2} \approx 2.738612788
x = -\frac{\sqrt{30}}{2} \approx -2.738612788
Graph
Share
Copied to clipboard
x^{2}=0+\frac{5}{20}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{3}{20} and 0 to get 0.
x^{2}=0+\frac{1}{4}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
x^{2}=0+\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{4} and 1 to get \frac{1}{4}.
x^{2}=\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add 0 and \frac{1}{4} to get \frac{1}{4}.
x^{2}=\frac{1}{4}+\frac{1}{4}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
x^{2}=\frac{1}{4}+1+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{4} and 4 to get 1.
x^{2}=\frac{5}{4}+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add \frac{1}{4} and 1 to get \frac{5}{4}.
x^{2}=\frac{5}{4}+\frac{1}{5}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
x^{2}=\frac{5}{4}+\frac{9}{5}+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{5} and 9 to get \frac{9}{5}.
x^{2}=\frac{61}{20}+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add \frac{5}{4} and \frac{9}{5} to get \frac{61}{20}.
x^{2}=\frac{61}{20}+\frac{1}{5}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x^{2}=\frac{61}{20}+\frac{16}{5}+\frac{1}{20}\times 25
Multiply \frac{1}{5} and 16 to get \frac{16}{5}.
x^{2}=\frac{25}{4}+\frac{1}{20}\times 25
Add \frac{61}{20} and \frac{16}{5} to get \frac{25}{4}.
x^{2}=\frac{25}{4}+\frac{5}{4}
Multiply \frac{1}{20} and 25 to get \frac{5}{4}.
x^{2}=\frac{15}{2}
Add \frac{25}{4} and \frac{5}{4} to get \frac{15}{2}.
x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{30}}{2}
Take the square root of both sides of the equation.
x^{2}=0+\frac{5}{20}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{3}{20} and 0 to get 0.
x^{2}=0+\frac{1}{4}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
x^{2}=0+\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{4} and 1 to get \frac{1}{4}.
x^{2}=\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add 0 and \frac{1}{4} to get \frac{1}{4}.
x^{2}=\frac{1}{4}+\frac{1}{4}\times 4+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
x^{2}=\frac{1}{4}+1+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{4} and 4 to get 1.
x^{2}=\frac{5}{4}+\frac{4}{20}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add \frac{1}{4} and 1 to get \frac{5}{4}.
x^{2}=\frac{5}{4}+\frac{1}{5}\times 9+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
x^{2}=\frac{5}{4}+\frac{9}{5}+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{5} and 9 to get \frac{9}{5}.
x^{2}=\frac{61}{20}+\frac{2}{10}\times 16+\frac{1}{20}\times 25
Add \frac{5}{4} and \frac{9}{5} to get \frac{61}{20}.
x^{2}=\frac{61}{20}+\frac{1}{5}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x^{2}=\frac{61}{20}+\frac{16}{5}+\frac{1}{20}\times 25
Multiply \frac{1}{5} and 16 to get \frac{16}{5}.
x^{2}=\frac{25}{4}+\frac{1}{20}\times 25
Add \frac{61}{20} and \frac{16}{5} to get \frac{25}{4}.
x^{2}=\frac{25}{4}+\frac{5}{4}
Multiply \frac{1}{20} and 25 to get \frac{5}{4}.
x^{2}=\frac{15}{2}
Add \frac{25}{4} and \frac{5}{4} to get \frac{15}{2}.
x^{2}-\frac{15}{2}=0
Subtract \frac{15}{2} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{15}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{15}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{15}{2}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{30}}{2}
Multiply -4 times -\frac{15}{2}.
x=\frac{\sqrt{30}}{2}
Now solve the equation x=\frac{0±\sqrt{30}}{2} when ± is plus.
x=-\frac{\sqrt{30}}{2}
Now solve the equation x=\frac{0±\sqrt{30}}{2} when ± is minus.
x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{30}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}