Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{-0.1}{4\times 8-8.5\times 10^{-12}}
Multiply 2 and 2 to get 4.
x^{2}=\frac{-0.1}{32-8.5\times 10^{-12}}
Multiply 4 and 8 to get 32.
x^{2}=\frac{-0.1}{32-8.5\times \frac{1}{1000000000000}}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
x^{2}=\frac{-0.1}{32-\frac{17}{2000000000000}}
Multiply 8.5 and \frac{1}{1000000000000} to get \frac{17}{2000000000000}.
x^{2}=\frac{-0.1}{\frac{63999999999983}{2000000000000}}
Subtract \frac{17}{2000000000000} from 32 to get \frac{63999999999983}{2000000000000}.
x^{2}=-0.1\times \frac{2000000000000}{63999999999983}
Divide -0.1 by \frac{63999999999983}{2000000000000} by multiplying -0.1 by the reciprocal of \frac{63999999999983}{2000000000000}.
x^{2}=-\frac{200000000000}{63999999999983}
Multiply -0.1 and \frac{2000000000000}{63999999999983} to get -\frac{200000000000}{63999999999983}.
x=\frac{200000\sqrt{319999999999915}i}{63999999999983} x=-\frac{200000\sqrt{319999999999915}i}{63999999999983}
The equation is now solved.
x^{2}=\frac{-0.1}{4\times 8-8.5\times 10^{-12}}
Multiply 2 and 2 to get 4.
x^{2}=\frac{-0.1}{32-8.5\times 10^{-12}}
Multiply 4 and 8 to get 32.
x^{2}=\frac{-0.1}{32-8.5\times \frac{1}{1000000000000}}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
x^{2}=\frac{-0.1}{32-\frac{17}{2000000000000}}
Multiply 8.5 and \frac{1}{1000000000000} to get \frac{17}{2000000000000}.
x^{2}=\frac{-0.1}{\frac{63999999999983}{2000000000000}}
Subtract \frac{17}{2000000000000} from 32 to get \frac{63999999999983}{2000000000000}.
x^{2}=-0.1\times \frac{2000000000000}{63999999999983}
Divide -0.1 by \frac{63999999999983}{2000000000000} by multiplying -0.1 by the reciprocal of \frac{63999999999983}{2000000000000}.
x^{2}=-\frac{200000000000}{63999999999983}
Multiply -0.1 and \frac{2000000000000}{63999999999983} to get -\frac{200000000000}{63999999999983}.
x^{2}+\frac{200000000000}{63999999999983}=0
Add \frac{200000000000}{63999999999983} to both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{200000000000}{63999999999983}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and \frac{200000000000}{63999999999983} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{200000000000}{63999999999983}}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{800000000000}{63999999999983}}}{2}
Multiply -4 times \frac{200000000000}{63999999999983}.
x=\frac{0±\frac{400000\sqrt{319999999999915}i}{63999999999983}}{2}
Take the square root of -\frac{800000000000}{63999999999983}.
x=\frac{200000\sqrt{319999999999915}i}{63999999999983}
Now solve the equation x=\frac{0±\frac{400000\sqrt{319999999999915}i}{63999999999983}}{2} when ± is plus.
x=-\frac{200000\sqrt{319999999999915}i}{63999999999983}
Now solve the equation x=\frac{0±\frac{400000\sqrt{319999999999915}i}{63999999999983}}{2} when ± is minus.
x=\frac{200000\sqrt{319999999999915}i}{63999999999983} x=-\frac{200000\sqrt{319999999999915}i}{63999999999983}
The equation is now solved.