x ^ { 2 } + y ^ { 2 } - 2 d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{x^{2}+y^{2}}{2x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{x^{2}+y^{2}}{2x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
x=\sqrt{d^{2}-y^{2}}+d
x=-\sqrt{d^{2}-y^{2}}+d
Solve for x
x=\sqrt{d^{2}-y^{2}}+d
x=-\sqrt{d^{2}-y^{2}}+d\text{, }|y|\leq |d|
Graph
Share
Copied to clipboard
y^{2}-2dx=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2dx=-x^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x\right)d=-x^{2}-y^{2}
The equation is in standard form.
\frac{\left(-2x\right)d}{-2x}=\frac{-x^{2}-y^{2}}{-2x}
Divide both sides by -2x.
d=\frac{-x^{2}-y^{2}}{-2x}
Dividing by -2x undoes the multiplication by -2x.
d=\frac{y^{2}}{2x}+\frac{x}{2}
Divide -x^{2}-y^{2} by -2x.
y^{2}-2dx=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2dx=-x^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-2x\right)d=-x^{2}-y^{2}
The equation is in standard form.
\frac{\left(-2x\right)d}{-2x}=\frac{-x^{2}-y^{2}}{-2x}
Divide both sides by -2x.
d=\frac{-x^{2}-y^{2}}{-2x}
Dividing by -2x undoes the multiplication by -2x.
d=\frac{y^{2}}{2x}+\frac{x}{2}
Divide -x^{2}-y^{2} by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}