Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+x-5-7x+14
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-6x-5+14
Combine x and -7x to get -6x.
-2x^{2}-6x+9
Add -5 and 14 to get 9.
factor(-2x^{2}+x-5-7x+14)
Combine x^{2} and -3x^{2} to get -2x^{2}.
factor(-2x^{2}-6x-5+14)
Combine x and -7x to get -6x.
factor(-2x^{2}-6x+9)
Add -5 and 14 to get 9.
-2x^{2}-6x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\times 9}}{2\left(-2\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\times 9}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-6\right)±\sqrt{36+72}}{2\left(-2\right)}
Multiply 8 times 9.
x=\frac{-\left(-6\right)±\sqrt{108}}{2\left(-2\right)}
Add 36 to 72.
x=\frac{-\left(-6\right)±6\sqrt{3}}{2\left(-2\right)}
Take the square root of 108.
x=\frac{6±6\sqrt{3}}{2\left(-2\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{6\sqrt{3}+6}{-4}
Now solve the equation x=\frac{6±6\sqrt{3}}{-4} when ± is plus. Add 6 to 6\sqrt{3}.
x=\frac{-3\sqrt{3}-3}{2}
Divide 6+6\sqrt{3} by -4.
x=\frac{6-6\sqrt{3}}{-4}
Now solve the equation x=\frac{6±6\sqrt{3}}{-4} when ± is minus. Subtract 6\sqrt{3} from 6.
x=\frac{3\sqrt{3}-3}{2}
Divide 6-6\sqrt{3} by -4.
-2x^{2}-6x+9=-2\left(x-\frac{-3\sqrt{3}-3}{2}\right)\left(x-\frac{3\sqrt{3}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3-3\sqrt{3}}{2} for x_{1} and \frac{-3+3\sqrt{3}}{2} for x_{2}.