Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\sqrt{x^{2}-1}=2-x^{2}
Subtract x^{2} from both sides of the equation.
\left(x\sqrt{x^{2}-1}\right)^{2}=\left(2-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{x^{2}-1}\right)^{2}=\left(2-x^{2}\right)^{2}
Expand \left(x\sqrt{x^{2}-1}\right)^{2}.
x^{2}\left(x^{2}-1\right)=\left(2-x^{2}\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{4}-x^{2}=\left(2-x^{2}\right)^{2}
Use the distributive property to multiply x^{2} by x^{2}-1.
x^{4}-x^{2}=4-4x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x^{2}\right)^{2}.
x^{4}-x^{2}=4-4x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-x^{2}+4x^{2}=4+x^{4}
Add 4x^{2} to both sides.
x^{4}+3x^{2}=4+x^{4}
Combine -x^{2} and 4x^{2} to get 3x^{2}.
x^{4}+3x^{2}-x^{4}=4
Subtract x^{4} from both sides.
3x^{2}=4
Combine x^{4} and -x^{4} to get 0.
x^{2}=\frac{4}{3}
Divide both sides by 3.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Take the square root of both sides of the equation.
\left(\frac{2\sqrt{3}}{3}\right)^{2}+\frac{2\sqrt{3}}{3}\sqrt{\left(\frac{2\sqrt{3}}{3}\right)^{2}-1}=2
Substitute \frac{2\sqrt{3}}{3} for x in the equation x^{2}+x\sqrt{x^{2}-1}=2.
2=2
Simplify. The value x=\frac{2\sqrt{3}}{3} satisfies the equation.
\left(-\frac{2\sqrt{3}}{3}\right)^{2}+\left(-\frac{2\sqrt{3}}{3}\right)\sqrt{\left(-\frac{2\sqrt{3}}{3}\right)^{2}-1}=2
Substitute -\frac{2\sqrt{3}}{3} for x in the equation x^{2}+x\sqrt{x^{2}-1}=2.
\frac{2}{3}=2
Simplify. The value x=-\frac{2\sqrt{3}}{3} does not satisfy the equation.
x=\frac{2\sqrt{3}}{3}
Equation x\sqrt{x^{2}-1}=2-x^{2} has a unique solution.