Factor
x^{2}\left(x^{4}+1\right)\left(x^{8}-x^{4}+1\right)
Evaluate
x^{14}+x^{2}
Graph
Share
Copied to clipboard
x^{2}\left(1+x^{12}\right)
Factor out x^{2}.
\left(x^{4}+1\right)\left(x^{8}-x^{4}+1\right)
Consider 1+x^{12}. Rewrite 1+x^{12} as \left(x^{4}\right)^{3}+1^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
x^{2}\left(x^{4}+1\right)\left(x^{8}-x^{4}+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: x^{8}-x^{4}+1,x^{4}+1.
x^{2}+x^{14}
To multiply powers of the same base, add their exponents. Add 2 and 12 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}