Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=\left(\sqrt{2}+\sqrt{6}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2x^{2}=2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
2x^{2}=2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2x^{2}=2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2x^{2}=2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
2x^{2}=2+4\sqrt{3}+6
The square of \sqrt{6} is 6.
2x^{2}=8+4\sqrt{3}
Add 2 and 6 to get 8.
x^{2}=\frac{4\sqrt{3}+8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}=2\sqrt{3}+4
Divide 8+4\sqrt{3} by 2.
x=\sqrt{3}+1 x=-\left(\sqrt{3}+1\right)
Take the square root of both sides of the equation.
2x^{2}=\left(\sqrt{2}+\sqrt{6}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2x^{2}=2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
2x^{2}=2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2x^{2}=2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2x^{2}=2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
2x^{2}=2+4\sqrt{3}+6
The square of \sqrt{6} is 6.
2x^{2}=8+4\sqrt{3}
Add 2 and 6 to get 8.
2x^{2}-8=4\sqrt{3}
Subtract 8 from both sides.
2x^{2}-8-4\sqrt{3}=0
Subtract 4\sqrt{3} from both sides.
2x^{2}-4\sqrt{3}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-4\sqrt{3}-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -8-4\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-4\sqrt{3}-8\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-4\sqrt{3}-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{32\sqrt{3}+64}}{2\times 2}
Multiply -8 times -8-4\sqrt{3}.
x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{2\times 2}
Take the square root of 64+32\sqrt{3}.
x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4}
Multiply 2 times 2.
x=\sqrt{3}+1
Now solve the equation x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4} when ± is plus.
x=-\sqrt{3}-1
Now solve the equation x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4} when ± is minus.
x=\sqrt{3}+1 x=-\sqrt{3}-1
The equation is now solved.