Solve for x (complex solution)
x=-\left(\sqrt{3}+1\right)\approx -2.732050808
x=\sqrt{3}+1\approx 2.732050808
Solve for x
x=\sqrt{3}+1\approx 2.732050808
x=-\sqrt{3}-1\approx -2.732050808
Graph
Share
Copied to clipboard
2x^{2}=\left(\sqrt{2}+\sqrt{6}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2x^{2}=2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
2x^{2}=2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2x^{2}=2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2x^{2}=2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
2x^{2}=2+4\sqrt{3}+6
The square of \sqrt{6} is 6.
2x^{2}=8+4\sqrt{3}
Add 2 and 6 to get 8.
x^{2}=\frac{4\sqrt{3}+8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}=2\sqrt{3}+4
Divide 8+4\sqrt{3} by 2.
x=\sqrt{3}+1 x=-\left(\sqrt{3}+1\right)
Take the square root of both sides of the equation.
2x^{2}=\left(\sqrt{2}+\sqrt{6}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2x^{2}=2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
2x^{2}=2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2x^{2}=2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2x^{2}=2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
2x^{2}=2+4\sqrt{3}+6
The square of \sqrt{6} is 6.
2x^{2}=8+4\sqrt{3}
Add 2 and 6 to get 8.
2x^{2}-8=4\sqrt{3}
Subtract 8 from both sides.
2x^{2}-8-4\sqrt{3}=0
Subtract 4\sqrt{3} from both sides.
2x^{2}-4\sqrt{3}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-4\sqrt{3}-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -8-4\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-4\sqrt{3}-8\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-4\sqrt{3}-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{32\sqrt{3}+64}}{2\times 2}
Multiply -8 times -8-4\sqrt{3}.
x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{2\times 2}
Take the square root of 64+32\sqrt{3}.
x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4}
Multiply 2 times 2.
x=\sqrt{3}+1
Now solve the equation x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4} when ± is plus.
x=-\sqrt{3}-1
Now solve the equation x=\frac{0±2^{\frac{5}{2}}\times \frac{\sqrt{2}+\sqrt{6}}{2}}{4} when ± is minus.
x=\sqrt{3}+1 x=-\sqrt{3}-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}