Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+6x-3x+10=15-1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x+10=15-1
Combine 6x and -3x to get 3x.
2x^{2}+3x+10=14
Subtract 1 from 15 to get 14.
2x^{2}+3x+10-14=0
Subtract 14 from both sides.
2x^{2}+3x-4=0
Subtract 14 from 10 to get -4.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-4\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-4\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+32}}{2\times 2}
Multiply -8 times -4.
x=\frac{-3±\sqrt{41}}{2\times 2}
Add 9 to 32.
x=\frac{-3±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{41}}{4} when ± is plus. Add -3 to \sqrt{41}.
x=\frac{-\sqrt{41}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -3.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
The equation is now solved.
2x^{2}+6x-3x+10=15-1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x+10=15-1
Combine 6x and -3x to get 3x.
2x^{2}+3x+10=14
Subtract 1 from 15 to get 14.
2x^{2}+3x=14-10
Subtract 10 from both sides.
2x^{2}+3x=4
Subtract 10 from 14 to get 4.
\frac{2x^{2}+3x}{2}=\frac{4}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x=2
Divide 4 by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Add 2 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
Simplify.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.