Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x+24=\sqrt{3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+x+24-\sqrt{3}=\sqrt{3}-\sqrt{3}
Subtract \sqrt{3} from both sides of the equation.
x^{2}+x+24-\sqrt{3}=0
Subtracting \sqrt{3} from itself leaves 0.
x=\frac{-1±\sqrt{1^{2}-4\left(24-\sqrt{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and 24-\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(24-\sqrt{3}\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+4\sqrt{3}-96}}{2}
Multiply -4 times 24-\sqrt{3}.
x=\frac{-1±\sqrt{4\sqrt{3}-95}}{2}
Add 1 to -96+4\sqrt{3}.
x=\frac{-1±i\sqrt{95-4\sqrt{3}}}{2}
Take the square root of -95+4\sqrt{3}.
x=\frac{-1+i\sqrt{95-4\sqrt{3}}}{2}
Now solve the equation x=\frac{-1±i\sqrt{95-4\sqrt{3}}}{2} when ± is plus. Add -1 to i\sqrt{95-4\sqrt{3}}.
x=\frac{-i\sqrt{95-4\sqrt{3}}-1}{2}
Now solve the equation x=\frac{-1±i\sqrt{95-4\sqrt{3}}}{2} when ± is minus. Subtract i\sqrt{95-4\sqrt{3}} from -1.
x=\frac{-1+i\sqrt{95-4\sqrt{3}}}{2} x=\frac{-i\sqrt{95-4\sqrt{3}}-1}{2}
The equation is now solved.
x^{2}+x+24=\sqrt{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x+24-24=\sqrt{3}-24
Subtract 24 from both sides of the equation.
x^{2}+x=\sqrt{3}-24
Subtracting 24 from itself leaves 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\sqrt{3}-24+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\sqrt{3}-24+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\sqrt{3}-\frac{95}{4}
Add \sqrt{3}-24 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\sqrt{3}-\frac{95}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\sqrt{3}-\frac{95}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{i\sqrt{95-4\sqrt{3}}}{2} x+\frac{1}{2}=-\frac{i\sqrt{95-4\sqrt{3}}}{2}
Simplify.
x=\frac{-1+i\sqrt{95-4\sqrt{3}}}{2} x=\frac{-i\sqrt{95-4\sqrt{3}}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.