Factor
\left(x-\frac{-3\sqrt{21}-13}{2}\right)\left(x-\frac{3\sqrt{21}-13}{2}\right)
Evaluate
x^{2}+13x-5
Graph
Share
Copied to clipboard
factor(x^{2}+13x-5)
Combine x and 12x to get 13x.
x^{2}+13x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\left(-5\right)}}{2}
Square 13.
x=\frac{-13±\sqrt{169+20}}{2}
Multiply -4 times -5.
x=\frac{-13±\sqrt{189}}{2}
Add 169 to 20.
x=\frac{-13±3\sqrt{21}}{2}
Take the square root of 189.
x=\frac{3\sqrt{21}-13}{2}
Now solve the equation x=\frac{-13±3\sqrt{21}}{2} when ± is plus. Add -13 to 3\sqrt{21}.
x=\frac{-3\sqrt{21}-13}{2}
Now solve the equation x=\frac{-13±3\sqrt{21}}{2} when ± is minus. Subtract 3\sqrt{21} from -13.
x^{2}+13x-5=\left(x-\frac{3\sqrt{21}-13}{2}\right)\left(x-\frac{-3\sqrt{21}-13}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-13+3\sqrt{21}}{2} for x_{1} and \frac{-13-3\sqrt{21}}{2} for x_{2}.
x^{2}+13x-5
Combine x and 12x to get 13x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}