Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{qx-3x-3q-6}{x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&q=-2\text{ and }x=0\end{matrix}\right.
Solve for q (complex solution)
\left\{\begin{matrix}q=-\frac{px+3x+6}{3-x}\text{, }&x\neq 3\\q\in \mathrm{C}\text{, }&x=3\text{ and }p=-5\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{qx-3x-3q-6}{x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&q=-2\text{ and }x=0\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=-\frac{px+3x+6}{3-x}\text{, }&x\neq 3\\q\in \mathrm{R}\text{, }&x=3\text{ and }p=-5\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+px+6=x^{2}-3x+qx-3q
Use the distributive property to multiply x+q by x-3.
px+6=x^{2}-3x+qx-3q-x^{2}
Subtract x^{2} from both sides.
px+6=-3x+qx-3q
Combine x^{2} and -x^{2} to get 0.
px=-3x+qx-3q-6
Subtract 6 from both sides.
xp=qx-3x-3q-6
The equation is in standard form.
\frac{xp}{x}=\frac{qx-3x-3q-6}{x}
Divide both sides by x.
p=\frac{qx-3x-3q-6}{x}
Dividing by x undoes the multiplication by x.
x^{2}+px+6=x^{2}-3x+qx-3q
Use the distributive property to multiply x+q by x-3.
x^{2}-3x+qx-3q=x^{2}+px+6
Swap sides so that all variable terms are on the left hand side.
-3x+qx-3q=x^{2}+px+6-x^{2}
Subtract x^{2} from both sides.
-3x+qx-3q=px+6
Combine x^{2} and -x^{2} to get 0.
qx-3q=px+6+3x
Add 3x to both sides.
\left(x-3\right)q=px+6+3x
Combine all terms containing q.
\left(x-3\right)q=px+3x+6
The equation is in standard form.
\frac{\left(x-3\right)q}{x-3}=\frac{px+3x+6}{x-3}
Divide both sides by x-3.
q=\frac{px+3x+6}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
x^{2}+px+6=x^{2}-3x+qx-3q
Use the distributive property to multiply x+q by x-3.
px+6=x^{2}-3x+qx-3q-x^{2}
Subtract x^{2} from both sides.
px+6=-3x+qx-3q
Combine x^{2} and -x^{2} to get 0.
px=-3x+qx-3q-6
Subtract 6 from both sides.
xp=qx-3x-3q-6
The equation is in standard form.
\frac{xp}{x}=\frac{qx-3x-3q-6}{x}
Divide both sides by x.
p=\frac{qx-3x-3q-6}{x}
Dividing by x undoes the multiplication by x.
x^{2}+px+6=x^{2}-3x+qx-3q
Use the distributive property to multiply x+q by x-3.
x^{2}-3x+qx-3q=x^{2}+px+6
Swap sides so that all variable terms are on the left hand side.
-3x+qx-3q=x^{2}+px+6-x^{2}
Subtract x^{2} from both sides.
-3x+qx-3q=px+6
Combine x^{2} and -x^{2} to get 0.
qx-3q=px+6+3x
Add 3x to both sides.
\left(x-3\right)q=px+6+3x
Combine all terms containing q.
\left(x-3\right)q=px+3x+6
The equation is in standard form.
\frac{\left(x-3\right)q}{x-3}=\frac{px+3x+6}{x-3}
Divide both sides by x-3.
q=\frac{px+3x+6}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}