Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x^{2}+ix=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+ix-2=2-2
Subtract 2 from both sides of the equation.
x^{2}+ix-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-i±\sqrt{i^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, i for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-i±\sqrt{-1-4\left(-2\right)}}{2}
Square i.
x=\frac{-i±\sqrt{-1+8}}{2}
Multiply -4 times -2.
x=\frac{-i±\sqrt{7}}{2}
Add -1 to 8.
x=\frac{\sqrt{7}-i}{2}
Now solve the equation x=\frac{-i±\sqrt{7}}{2} when ± is plus. Add -i to \sqrt{7}.
x=\frac{\sqrt{7}}{2}-\frac{1}{2}i
Divide -i+\sqrt{7} by 2.
x=\frac{-\sqrt{7}-i}{2}
Now solve the equation x=\frac{-i±\sqrt{7}}{2} when ± is minus. Subtract \sqrt{7} from -i.
x=-\frac{\sqrt{7}}{2}-\frac{1}{2}i
Divide -i-\sqrt{7} by 2.
x=\frac{\sqrt{7}}{2}-\frac{1}{2}i x=-\frac{\sqrt{7}}{2}-\frac{1}{2}i
The equation is now solved.
x^{2}+ix=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+ix+\left(\frac{1}{2}i\right)^{2}=2+\left(\frac{1}{2}i\right)^{2}
Divide i, the coefficient of the x term, by 2 to get \frac{1}{2}i. Then add the square of \frac{1}{2}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+ix-\frac{1}{4}=2-\frac{1}{4}
Square \frac{1}{2}i.
x^{2}+ix-\frac{1}{4}=\frac{7}{4}
Add 2 to -\frac{1}{4}.
\left(x+\frac{1}{2}i\right)^{2}=\frac{7}{4}
Factor x^{2}+ix-\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}i\right)^{2}}=\sqrt{\frac{7}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}i=\frac{\sqrt{7}}{2} x+\frac{1}{2}i=-\frac{\sqrt{7}}{2}
Simplify.
x=\frac{\sqrt{7}}{2}-\frac{1}{2}i x=-\frac{\sqrt{7}}{2}-\frac{1}{2}i
Subtract \frac{1}{2}i from both sides of the equation.