Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=90 ab=-48600
To solve the equation, factor x^{2}+90x-48600 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,48600 -2,24300 -3,16200 -4,12150 -5,9720 -6,8100 -8,6075 -9,5400 -10,4860 -12,4050 -15,3240 -18,2700 -20,2430 -24,2025 -25,1944 -27,1800 -30,1620 -36,1350 -40,1215 -45,1080 -50,972 -54,900 -60,810 -72,675 -75,648 -81,600 -90,540 -100,486 -108,450 -120,405 -135,360 -150,324 -162,300 -180,270 -200,243 -216,225
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48600.
-1+48600=48599 -2+24300=24298 -3+16200=16197 -4+12150=12146 -5+9720=9715 -6+8100=8094 -8+6075=6067 -9+5400=5391 -10+4860=4850 -12+4050=4038 -15+3240=3225 -18+2700=2682 -20+2430=2410 -24+2025=2001 -25+1944=1919 -27+1800=1773 -30+1620=1590 -36+1350=1314 -40+1215=1175 -45+1080=1035 -50+972=922 -54+900=846 -60+810=750 -72+675=603 -75+648=573 -81+600=519 -90+540=450 -100+486=386 -108+450=342 -120+405=285 -135+360=225 -150+324=174 -162+300=138 -180+270=90 -200+243=43 -216+225=9
Calculate the sum for each pair.
a=-180 b=270
The solution is the pair that gives sum 90.
\left(x-180\right)\left(x+270\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=180 x=-270
To find equation solutions, solve x-180=0 and x+270=0.
a+b=90 ab=1\left(-48600\right)=-48600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-48600. To find a and b, set up a system to be solved.
-1,48600 -2,24300 -3,16200 -4,12150 -5,9720 -6,8100 -8,6075 -9,5400 -10,4860 -12,4050 -15,3240 -18,2700 -20,2430 -24,2025 -25,1944 -27,1800 -30,1620 -36,1350 -40,1215 -45,1080 -50,972 -54,900 -60,810 -72,675 -75,648 -81,600 -90,540 -100,486 -108,450 -120,405 -135,360 -150,324 -162,300 -180,270 -200,243 -216,225
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48600.
-1+48600=48599 -2+24300=24298 -3+16200=16197 -4+12150=12146 -5+9720=9715 -6+8100=8094 -8+6075=6067 -9+5400=5391 -10+4860=4850 -12+4050=4038 -15+3240=3225 -18+2700=2682 -20+2430=2410 -24+2025=2001 -25+1944=1919 -27+1800=1773 -30+1620=1590 -36+1350=1314 -40+1215=1175 -45+1080=1035 -50+972=922 -54+900=846 -60+810=750 -72+675=603 -75+648=573 -81+600=519 -90+540=450 -100+486=386 -108+450=342 -120+405=285 -135+360=225 -150+324=174 -162+300=138 -180+270=90 -200+243=43 -216+225=9
Calculate the sum for each pair.
a=-180 b=270
The solution is the pair that gives sum 90.
\left(x^{2}-180x\right)+\left(270x-48600\right)
Rewrite x^{2}+90x-48600 as \left(x^{2}-180x\right)+\left(270x-48600\right).
x\left(x-180\right)+270\left(x-180\right)
Factor out x in the first and 270 in the second group.
\left(x-180\right)\left(x+270\right)
Factor out common term x-180 by using distributive property.
x=180 x=-270
To find equation solutions, solve x-180=0 and x+270=0.
x^{2}+90x-48600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\left(-48600\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 90 for b, and -48600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-48600\right)}}{2}
Square 90.
x=\frac{-90±\sqrt{8100+194400}}{2}
Multiply -4 times -48600.
x=\frac{-90±\sqrt{202500}}{2}
Add 8100 to 194400.
x=\frac{-90±450}{2}
Take the square root of 202500.
x=\frac{360}{2}
Now solve the equation x=\frac{-90±450}{2} when ± is plus. Add -90 to 450.
x=180
Divide 360 by 2.
x=-\frac{540}{2}
Now solve the equation x=\frac{-90±450}{2} when ± is minus. Subtract 450 from -90.
x=-270
Divide -540 by 2.
x=180 x=-270
The equation is now solved.
x^{2}+90x-48600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+90x-48600-\left(-48600\right)=-\left(-48600\right)
Add 48600 to both sides of the equation.
x^{2}+90x=-\left(-48600\right)
Subtracting -48600 from itself leaves 0.
x^{2}+90x=48600
Subtract -48600 from 0.
x^{2}+90x+45^{2}=48600+45^{2}
Divide 90, the coefficient of the x term, by 2 to get 45. Then add the square of 45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+90x+2025=48600+2025
Square 45.
x^{2}+90x+2025=50625
Add 48600 to 2025.
\left(x+45\right)^{2}=50625
Factor x^{2}+90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+45\right)^{2}}=\sqrt{50625}
Take the square root of both sides of the equation.
x+45=225 x+45=-225
Simplify.
x=180 x=-270
Subtract 45 from both sides of the equation.
x ^ 2 +90x -48600 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -90 rs = -48600
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -45 - u s = -45 + u
Two numbers r and s sum up to -90 exactly when the average of the two numbers is \frac{1}{2}*-90 = -45. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-45 - u) (-45 + u) = -48600
To solve for unknown quantity u, substitute these in the product equation rs = -48600
2025 - u^2 = -48600
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -48600-2025 = -50625
Simplify the expression by subtracting 2025 on both sides
u^2 = 50625 u = \pm\sqrt{50625} = \pm 225
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-45 - 225 = -270 s = -45 + 225 = 180
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.