Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+9-12x=0
Subtract 12x from both sides.
x^{2}-12x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-12\right)±\sqrt{108}}{2}
Add 144 to -36.
x=\frac{-\left(-12\right)±6\sqrt{3}}{2}
Take the square root of 108.
x=\frac{12±6\sqrt{3}}{2}
The opposite of -12 is 12.
x=\frac{6\sqrt{3}+12}{2}
Now solve the equation x=\frac{12±6\sqrt{3}}{2} when ± is plus. Add 12 to 6\sqrt{3}.
x=3\sqrt{3}+6
Divide 12+6\sqrt{3} by 2.
x=\frac{12-6\sqrt{3}}{2}
Now solve the equation x=\frac{12±6\sqrt{3}}{2} when ± is minus. Subtract 6\sqrt{3} from 12.
x=6-3\sqrt{3}
Divide 12-6\sqrt{3} by 2.
x=3\sqrt{3}+6 x=6-3\sqrt{3}
The equation is now solved.
x^{2}+9-12x=0
Subtract 12x from both sides.
x^{2}-12x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}-12x+\left(-6\right)^{2}=-9+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-9+36
Square -6.
x^{2}-12x+36=27
Add -9 to 36.
\left(x-6\right)^{2}=27
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{27}
Take the square root of both sides of the equation.
x-6=3\sqrt{3} x-6=-3\sqrt{3}
Simplify.
x=3\sqrt{3}+6 x=6-3\sqrt{3}
Add 6 to both sides of the equation.