Solve for x
x = \frac{\sqrt{39} + 3}{4} \approx 2.3112495
x=\frac{3-\sqrt{39}}{4}\approx -0.8112495
Graph
Share
Copied to clipboard
8x^{2}-12x-3=12
Combine x^{2} and 7x^{2} to get 8x^{2}.
8x^{2}-12x-3-12=0
Subtract 12 from both sides.
8x^{2}-12x-15=0
Subtract 12 from -3 to get -15.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -12 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 8\left(-15\right)}}{2\times 8}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-32\left(-15\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-12\right)±\sqrt{144+480}}{2\times 8}
Multiply -32 times -15.
x=\frac{-\left(-12\right)±\sqrt{624}}{2\times 8}
Add 144 to 480.
x=\frac{-\left(-12\right)±4\sqrt{39}}{2\times 8}
Take the square root of 624.
x=\frac{12±4\sqrt{39}}{2\times 8}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{39}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{39}+12}{16}
Now solve the equation x=\frac{12±4\sqrt{39}}{16} when ± is plus. Add 12 to 4\sqrt{39}.
x=\frac{\sqrt{39}+3}{4}
Divide 12+4\sqrt{39} by 16.
x=\frac{12-4\sqrt{39}}{16}
Now solve the equation x=\frac{12±4\sqrt{39}}{16} when ± is minus. Subtract 4\sqrt{39} from 12.
x=\frac{3-\sqrt{39}}{4}
Divide 12-4\sqrt{39} by 16.
x=\frac{\sqrt{39}+3}{4} x=\frac{3-\sqrt{39}}{4}
The equation is now solved.
8x^{2}-12x-3=12
Combine x^{2} and 7x^{2} to get 8x^{2}.
8x^{2}-12x=12+3
Add 3 to both sides.
8x^{2}-12x=15
Add 12 and 3 to get 15.
\frac{8x^{2}-12x}{8}=\frac{15}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{12}{8}\right)x=\frac{15}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{3}{2}x=\frac{15}{8}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{15}{8}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{15}{8}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{39}{16}
Add \frac{15}{8} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{39}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{39}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{39}}{4} x-\frac{3}{4}=-\frac{\sqrt{39}}{4}
Simplify.
x=\frac{\sqrt{39}+3}{4} x=\frac{3-\sqrt{39}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}