Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+67-18x=0
Subtract 18x from both sides.
x^{2}-18x+67=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 67}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 67 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 67}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-268}}{2}
Multiply -4 times 67.
x=\frac{-\left(-18\right)±\sqrt{56}}{2}
Add 324 to -268.
x=\frac{-\left(-18\right)±2\sqrt{14}}{2}
Take the square root of 56.
x=\frac{18±2\sqrt{14}}{2}
The opposite of -18 is 18.
x=\frac{2\sqrt{14}+18}{2}
Now solve the equation x=\frac{18±2\sqrt{14}}{2} when ± is plus. Add 18 to 2\sqrt{14}.
x=\sqrt{14}+9
Divide 18+2\sqrt{14} by 2.
x=\frac{18-2\sqrt{14}}{2}
Now solve the equation x=\frac{18±2\sqrt{14}}{2} when ± is minus. Subtract 2\sqrt{14} from 18.
x=9-\sqrt{14}
Divide 18-2\sqrt{14} by 2.
x=\sqrt{14}+9 x=9-\sqrt{14}
The equation is now solved.
x^{2}+67-18x=0
Subtract 18x from both sides.
x^{2}-18x=-67
Subtract 67 from both sides. Anything subtracted from zero gives its negation.
x^{2}-18x+\left(-9\right)^{2}=-67+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-67+81
Square -9.
x^{2}-18x+81=14
Add -67 to 81.
\left(x-9\right)^{2}=14
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x-9=\sqrt{14} x-9=-\sqrt{14}
Simplify.
x=\sqrt{14}+9 x=9-\sqrt{14}
Add 9 to both sides of the equation.