Solve for x
x=-59
x=-1
Graph
Share
Copied to clipboard
a+b=60 ab=59
To solve the equation, factor x^{2}+60x+59 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=1 b=59
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x+1\right)\left(x+59\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-1 x=-59
To find equation solutions, solve x+1=0 and x+59=0.
a+b=60 ab=1\times 59=59
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+59. To find a and b, set up a system to be solved.
a=1 b=59
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x^{2}+x\right)+\left(59x+59\right)
Rewrite x^{2}+60x+59 as \left(x^{2}+x\right)+\left(59x+59\right).
x\left(x+1\right)+59\left(x+1\right)
Factor out x in the first and 59 in the second group.
\left(x+1\right)\left(x+59\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-59
To find equation solutions, solve x+1=0 and x+59=0.
x^{2}+60x+59=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\times 59}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 60 for b, and 59 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 59}}{2}
Square 60.
x=\frac{-60±\sqrt{3600-236}}{2}
Multiply -4 times 59.
x=\frac{-60±\sqrt{3364}}{2}
Add 3600 to -236.
x=\frac{-60±58}{2}
Take the square root of 3364.
x=-\frac{2}{2}
Now solve the equation x=\frac{-60±58}{2} when ± is plus. Add -60 to 58.
x=-1
Divide -2 by 2.
x=-\frac{118}{2}
Now solve the equation x=\frac{-60±58}{2} when ± is minus. Subtract 58 from -60.
x=-59
Divide -118 by 2.
x=-1 x=-59
The equation is now solved.
x^{2}+60x+59=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+60x+59-59=-59
Subtract 59 from both sides of the equation.
x^{2}+60x=-59
Subtracting 59 from itself leaves 0.
x^{2}+60x+30^{2}=-59+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=-59+900
Square 30.
x^{2}+60x+900=841
Add -59 to 900.
\left(x+30\right)^{2}=841
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{841}
Take the square root of both sides of the equation.
x+30=29 x+30=-29
Simplify.
x=-1 x=-59
Subtract 30 from both sides of the equation.
x ^ 2 +60x +59 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -60 rs = 59
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -30 - u s = -30 + u
Two numbers r and s sum up to -60 exactly when the average of the two numbers is \frac{1}{2}*-60 = -30. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-30 - u) (-30 + u) = 59
To solve for unknown quantity u, substitute these in the product equation rs = 59
900 - u^2 = 59
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 59-900 = -841
Simplify the expression by subtracting 900 on both sides
u^2 = 841 u = \pm\sqrt{841} = \pm 29
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-30 - 29 = -59 s = -30 + 29 = -1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}