Solve for x
x = \frac{\sqrt{31} - 1}{2} \approx 2.283882181
x=\frac{-\sqrt{31}-1}{2}\approx -3.283882181
Graph
Share
Copied to clipboard
x^{2}+6x-7-4x=-x^{2}+8
Subtract 4x from both sides.
x^{2}+2x-7=-x^{2}+8
Combine 6x and -4x to get 2x.
x^{2}+2x-7+x^{2}=8
Add x^{2} to both sides.
2x^{2}+2x-7=8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x-7-8=0
Subtract 8 from both sides.
2x^{2}+2x-15=0
Subtract 8 from -7 to get -15.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-15\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-15\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+120}}{2\times 2}
Multiply -8 times -15.
x=\frac{-2±\sqrt{124}}{2\times 2}
Add 4 to 120.
x=\frac{-2±2\sqrt{31}}{2\times 2}
Take the square root of 124.
x=\frac{-2±2\sqrt{31}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{31}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{31}}{4} when ± is plus. Add -2 to 2\sqrt{31}.
x=\frac{\sqrt{31}-1}{2}
Divide -2+2\sqrt{31} by 4.
x=\frac{-2\sqrt{31}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{31}}{4} when ± is minus. Subtract 2\sqrt{31} from -2.
x=\frac{-\sqrt{31}-1}{2}
Divide -2-2\sqrt{31} by 4.
x=\frac{\sqrt{31}-1}{2} x=\frac{-\sqrt{31}-1}{2}
The equation is now solved.
x^{2}+6x-7-4x=-x^{2}+8
Subtract 4x from both sides.
x^{2}+2x-7=-x^{2}+8
Combine 6x and -4x to get 2x.
x^{2}+2x-7+x^{2}=8
Add x^{2} to both sides.
2x^{2}+2x-7=8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x=8+7
Add 7 to both sides.
2x^{2}+2x=15
Add 8 and 7 to get 15.
\frac{2x^{2}+2x}{2}=\frac{15}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{15}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{15}{2}
Divide 2 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{15}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{31}{4}
Add \frac{15}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{31}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{31}}{2} x+\frac{1}{2}=-\frac{\sqrt{31}}{2}
Simplify.
x=\frac{\sqrt{31}-1}{2} x=\frac{-\sqrt{31}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}