Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+6x+9-12=12-12
Subtract 12 from both sides of the equation.
x^{2}+6x+9-12=0
Subtracting 12 from itself leaves 0.
x^{2}+6x-3=0
Subtract 12 from 9.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+12}}{2}
Multiply -4 times -3.
x=\frac{-6±\sqrt{48}}{2}
Add 36 to 12.
x=\frac{-6±4\sqrt{3}}{2}
Take the square root of 48.
x=\frac{4\sqrt{3}-6}{2}
Now solve the equation x=\frac{-6±4\sqrt{3}}{2} when ± is plus. Add -6 to 4\sqrt{3}.
x=2\sqrt{3}-3
Divide -6+4\sqrt{3} by 2.
x=\frac{-4\sqrt{3}-6}{2}
Now solve the equation x=\frac{-6±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from -6.
x=-2\sqrt{3}-3
Divide -6-4\sqrt{3} by 2.
x=2\sqrt{3}-3 x=-2\sqrt{3}-3
The equation is now solved.
\left(x+3\right)^{2}=12
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x+3=2\sqrt{3} x+3=-2\sqrt{3}
Simplify.
x=2\sqrt{3}-3 x=-2\sqrt{3}-3
Subtract 3 from both sides of the equation.