Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+16-7x=-12
Subtract 7x from both sides.
x^{2}-x+16=-12
Combine 6x and -7x to get -x.
x^{2}-x+16+12=0
Add 12 to both sides.
x^{2}-x+28=0
Add 16 and 12 to get 28.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 28}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-112}}{2}
Multiply -4 times 28.
x=\frac{-\left(-1\right)±\sqrt{-111}}{2}
Add 1 to -112.
x=\frac{-\left(-1\right)±\sqrt{111}i}{2}
Take the square root of -111.
x=\frac{1±\sqrt{111}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{111}i}{2}
Now solve the equation x=\frac{1±\sqrt{111}i}{2} when ± is plus. Add 1 to i\sqrt{111}.
x=\frac{-\sqrt{111}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{111}i}{2} when ± is minus. Subtract i\sqrt{111} from 1.
x=\frac{1+\sqrt{111}i}{2} x=\frac{-\sqrt{111}i+1}{2}
The equation is now solved.
x^{2}+6x+16-7x=-12
Subtract 7x from both sides.
x^{2}-x+16=-12
Combine 6x and -7x to get -x.
x^{2}-x=-12-16
Subtract 16 from both sides.
x^{2}-x=-28
Subtract 16 from -12 to get -28.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-28+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-28+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{111}{4}
Add -28 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{111}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{111}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{111}i}{2} x-\frac{1}{2}=-\frac{\sqrt{111}i}{2}
Simplify.
x=\frac{1+\sqrt{111}i}{2} x=\frac{-\sqrt{111}i+1}{2}
Add \frac{1}{2} to both sides of the equation.