Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+57x=4080
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+57x-4080=4080-4080
Subtract 4080 from both sides of the equation.
x^{2}+57x-4080=0
Subtracting 4080 from itself leaves 0.
x=\frac{-57±\sqrt{57^{2}-4\left(-4080\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 57 for b, and -4080 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57±\sqrt{3249-4\left(-4080\right)}}{2}
Square 57.
x=\frac{-57±\sqrt{3249+16320}}{2}
Multiply -4 times -4080.
x=\frac{-57±\sqrt{19569}}{2}
Add 3249 to 16320.
x=\frac{\sqrt{19569}-57}{2}
Now solve the equation x=\frac{-57±\sqrt{19569}}{2} when ± is plus. Add -57 to \sqrt{19569}.
x=\frac{-\sqrt{19569}-57}{2}
Now solve the equation x=\frac{-57±\sqrt{19569}}{2} when ± is minus. Subtract \sqrt{19569} from -57.
x=\frac{\sqrt{19569}-57}{2} x=\frac{-\sqrt{19569}-57}{2}
The equation is now solved.
x^{2}+57x=4080
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+57x+\left(\frac{57}{2}\right)^{2}=4080+\left(\frac{57}{2}\right)^{2}
Divide 57, the coefficient of the x term, by 2 to get \frac{57}{2}. Then add the square of \frac{57}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+57x+\frac{3249}{4}=4080+\frac{3249}{4}
Square \frac{57}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+57x+\frac{3249}{4}=\frac{19569}{4}
Add 4080 to \frac{3249}{4}.
\left(x+\frac{57}{2}\right)^{2}=\frac{19569}{4}
Factor x^{2}+57x+\frac{3249}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{57}{2}\right)^{2}}=\sqrt{\frac{19569}{4}}
Take the square root of both sides of the equation.
x+\frac{57}{2}=\frac{\sqrt{19569}}{2} x+\frac{57}{2}=-\frac{\sqrt{19569}}{2}
Simplify.
x=\frac{\sqrt{19569}-57}{2} x=\frac{-\sqrt{19569}-57}{2}
Subtract \frac{57}{2} from both sides of the equation.