Solve for x (complex solution)
x=\sqrt{865}-25\approx 4.41088234
x=-\left(\sqrt{865}+25\right)\approx -54.41088234
Solve for x
x=\sqrt{865}-25\approx 4.41088234
x=-\sqrt{865}-25\approx -54.41088234
Graph
Share
Copied to clipboard
x^{2}+50x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-50±\sqrt{50^{2}-4\left(-240\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 50 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-240\right)}}{2}
Square 50.
x=\frac{-50±\sqrt{2500+960}}{2}
Multiply -4 times -240.
x=\frac{-50±\sqrt{3460}}{2}
Add 2500 to 960.
x=\frac{-50±2\sqrt{865}}{2}
Take the square root of 3460.
x=\frac{2\sqrt{865}-50}{2}
Now solve the equation x=\frac{-50±2\sqrt{865}}{2} when ± is plus. Add -50 to 2\sqrt{865}.
x=\sqrt{865}-25
Divide -50+2\sqrt{865} by 2.
x=\frac{-2\sqrt{865}-50}{2}
Now solve the equation x=\frac{-50±2\sqrt{865}}{2} when ± is minus. Subtract 2\sqrt{865} from -50.
x=-\sqrt{865}-25
Divide -50-2\sqrt{865} by 2.
x=\sqrt{865}-25 x=-\sqrt{865}-25
The equation is now solved.
x^{2}+50x-240=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+50x-240-\left(-240\right)=-\left(-240\right)
Add 240 to both sides of the equation.
x^{2}+50x=-\left(-240\right)
Subtracting -240 from itself leaves 0.
x^{2}+50x=240
Subtract -240 from 0.
x^{2}+50x+25^{2}=240+25^{2}
Divide 50, the coefficient of the x term, by 2 to get 25. Then add the square of 25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+50x+625=240+625
Square 25.
x^{2}+50x+625=865
Add 240 to 625.
\left(x+25\right)^{2}=865
Factor x^{2}+50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+25\right)^{2}}=\sqrt{865}
Take the square root of both sides of the equation.
x+25=\sqrt{865} x+25=-\sqrt{865}
Simplify.
x=\sqrt{865}-25 x=-\sqrt{865}-25
Subtract 25 from both sides of the equation.
x ^ 2 +50x -240 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -50 rs = -240
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -25 - u s = -25 + u
Two numbers r and s sum up to -50 exactly when the average of the two numbers is \frac{1}{2}*-50 = -25. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-25 - u) (-25 + u) = -240
To solve for unknown quantity u, substitute these in the product equation rs = -240
625 - u^2 = -240
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -240-625 = -865
Simplify the expression by subtracting 625 on both sides
u^2 = 865 u = \pm\sqrt{865} = \pm \sqrt{865}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-25 - \sqrt{865} = -54.411 s = -25 + \sqrt{865} = 4.411
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
x^{2}+50x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-50±\sqrt{50^{2}-4\left(-240\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 50 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-240\right)}}{2}
Square 50.
x=\frac{-50±\sqrt{2500+960}}{2}
Multiply -4 times -240.
x=\frac{-50±\sqrt{3460}}{2}
Add 2500 to 960.
x=\frac{-50±2\sqrt{865}}{2}
Take the square root of 3460.
x=\frac{2\sqrt{865}-50}{2}
Now solve the equation x=\frac{-50±2\sqrt{865}}{2} when ± is plus. Add -50 to 2\sqrt{865}.
x=\sqrt{865}-25
Divide -50+2\sqrt{865} by 2.
x=\frac{-2\sqrt{865}-50}{2}
Now solve the equation x=\frac{-50±2\sqrt{865}}{2} when ± is minus. Subtract 2\sqrt{865} from -50.
x=-\sqrt{865}-25
Divide -50-2\sqrt{865} by 2.
x=\sqrt{865}-25 x=-\sqrt{865}-25
The equation is now solved.
x^{2}+50x-240=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+50x-240-\left(-240\right)=-\left(-240\right)
Add 240 to both sides of the equation.
x^{2}+50x=-\left(-240\right)
Subtracting -240 from itself leaves 0.
x^{2}+50x=240
Subtract -240 from 0.
x^{2}+50x+25^{2}=240+25^{2}
Divide 50, the coefficient of the x term, by 2 to get 25. Then add the square of 25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+50x+625=240+625
Square 25.
x^{2}+50x+625=865
Add 240 to 625.
\left(x+25\right)^{2}=865
Factor x^{2}+50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+25\right)^{2}}=\sqrt{865}
Take the square root of both sides of the equation.
x+25=\sqrt{865} x+25=-\sqrt{865}
Simplify.
x=\sqrt{865}-25 x=-\sqrt{865}-25
Subtract 25 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}