Solve for x (complex solution)
x=-\frac{i\times 12\sqrt{426}}{5}\approx -0-49.535441857i
x=\frac{i\times 12\sqrt{426}}{5}\approx 49.535441857i
Graph
Share
Copied to clipboard
x^{2}+2500=6.8^{2}
Calculate 50 to the power of 2 and get 2500.
x^{2}+2500=46.24
Calculate 6.8 to the power of 2 and get 46.24.
x^{2}=46.24-2500
Subtract 2500 from both sides.
x^{2}=-2453.76
Subtract 2500 from 46.24 to get -2453.76.
x=\frac{12\sqrt{426}i}{5} x=-\frac{12\sqrt{426}i}{5}
The equation is now solved.
x^{2}+2500=6.8^{2}
Calculate 50 to the power of 2 and get 2500.
x^{2}+2500=46.24
Calculate 6.8 to the power of 2 and get 46.24.
x^{2}+2500-46.24=0
Subtract 46.24 from both sides.
x^{2}+2453.76=0
Subtract 46.24 from 2500 to get 2453.76.
x=\frac{0±\sqrt{0^{2}-4\times 2453.76}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 2453.76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2453.76}}{2}
Square 0.
x=\frac{0±\sqrt{-9815.04}}{2}
Multiply -4 times 2453.76.
x=\frac{0±\frac{24\sqrt{426}i}{5}}{2}
Take the square root of -9815.04.
x=\frac{12\sqrt{426}i}{5}
Now solve the equation x=\frac{0±\frac{24\sqrt{426}i}{5}}{2} when ± is plus.
x=-\frac{12\sqrt{426}i}{5}
Now solve the equation x=\frac{0±\frac{24\sqrt{426}i}{5}}{2} when ± is minus.
x=\frac{12\sqrt{426}i}{5} x=-\frac{12\sqrt{426}i}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}