Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+5x-\frac{16}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-\frac{16}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -\frac{16}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-\frac{16}{9}\right)}}{2}
Square 5.
x=\frac{-5±\sqrt{25+\frac{64}{9}}}{2}
Multiply -4 times -\frac{16}{9}.
x=\frac{-5±\sqrt{\frac{289}{9}}}{2}
Add 25 to \frac{64}{9}.
x=\frac{-5±\frac{17}{3}}{2}
Take the square root of \frac{289}{9}.
x=\frac{\frac{2}{3}}{2}
Now solve the equation x=\frac{-5±\frac{17}{3}}{2} when ± is plus. Add -5 to \frac{17}{3}.
x=\frac{1}{3}
Divide \frac{2}{3} by 2.
x=-\frac{\frac{32}{3}}{2}
Now solve the equation x=\frac{-5±\frac{17}{3}}{2} when ± is minus. Subtract \frac{17}{3} from -5.
x=-\frac{16}{3}
Divide -\frac{32}{3} by 2.
x=\frac{1}{3} x=-\frac{16}{3}
The equation is now solved.
x^{2}+5x-\frac{16}{9}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+5x-\frac{16}{9}-\left(-\frac{16}{9}\right)=-\left(-\frac{16}{9}\right)
Add \frac{16}{9} to both sides of the equation.
x^{2}+5x=-\left(-\frac{16}{9}\right)
Subtracting -\frac{16}{9} from itself leaves 0.
x^{2}+5x=\frac{16}{9}
Subtract -\frac{16}{9} from 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{16}{9}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{16}{9}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{289}{36}
Add \frac{16}{9} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{289}{36}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{17}{6} x+\frac{5}{2}=-\frac{17}{6}
Simplify.
x=\frac{1}{3} x=-\frac{16}{3}
Subtract \frac{5}{2} from both sides of the equation.