Solve for x
x = \frac{\sqrt{3841} - 49}{2} \approx 6.487900865
x=\frac{-\sqrt{3841}-49}{2}\approx -55.487900865
Graph
Share
Copied to clipboard
x^{2}+49x=360
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+49x-360=360-360
Subtract 360 from both sides of the equation.
x^{2}+49x-360=0
Subtracting 360 from itself leaves 0.
x=\frac{-49±\sqrt{49^{2}-4\left(-360\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 49 for b, and -360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-360\right)}}{2}
Square 49.
x=\frac{-49±\sqrt{2401+1440}}{2}
Multiply -4 times -360.
x=\frac{-49±\sqrt{3841}}{2}
Add 2401 to 1440.
x=\frac{\sqrt{3841}-49}{2}
Now solve the equation x=\frac{-49±\sqrt{3841}}{2} when ± is plus. Add -49 to \sqrt{3841}.
x=\frac{-\sqrt{3841}-49}{2}
Now solve the equation x=\frac{-49±\sqrt{3841}}{2} when ± is minus. Subtract \sqrt{3841} from -49.
x=\frac{\sqrt{3841}-49}{2} x=\frac{-\sqrt{3841}-49}{2}
The equation is now solved.
x^{2}+49x=360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+49x+\left(\frac{49}{2}\right)^{2}=360+\left(\frac{49}{2}\right)^{2}
Divide 49, the coefficient of the x term, by 2 to get \frac{49}{2}. Then add the square of \frac{49}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+49x+\frac{2401}{4}=360+\frac{2401}{4}
Square \frac{49}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+49x+\frac{2401}{4}=\frac{3841}{4}
Add 360 to \frac{2401}{4}.
\left(x+\frac{49}{2}\right)^{2}=\frac{3841}{4}
Factor x^{2}+49x+\frac{2401}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{2}\right)^{2}}=\sqrt{\frac{3841}{4}}
Take the square root of both sides of the equation.
x+\frac{49}{2}=\frac{\sqrt{3841}}{2} x+\frac{49}{2}=-\frac{\sqrt{3841}}{2}
Simplify.
x=\frac{\sqrt{3841}-49}{2} x=\frac{-\sqrt{3841}-49}{2}
Subtract \frac{49}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}