Solve for x
x=2\sqrt{330}+37\approx 73.331804249
x=37-2\sqrt{330}\approx 0.668195751
Graph
Share
Copied to clipboard
x^{2}-74x+49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 49}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -74 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-74\right)±\sqrt{5476-4\times 49}}{2}
Square -74.
x=\frac{-\left(-74\right)±\sqrt{5476-196}}{2}
Multiply -4 times 49.
x=\frac{-\left(-74\right)±\sqrt{5280}}{2}
Add 5476 to -196.
x=\frac{-\left(-74\right)±4\sqrt{330}}{2}
Take the square root of 5280.
x=\frac{74±4\sqrt{330}}{2}
The opposite of -74 is 74.
x=\frac{4\sqrt{330}+74}{2}
Now solve the equation x=\frac{74±4\sqrt{330}}{2} when ± is plus. Add 74 to 4\sqrt{330}.
x=2\sqrt{330}+37
Divide 74+4\sqrt{330} by 2.
x=\frac{74-4\sqrt{330}}{2}
Now solve the equation x=\frac{74±4\sqrt{330}}{2} when ± is minus. Subtract 4\sqrt{330} from 74.
x=37-2\sqrt{330}
Divide 74-4\sqrt{330} by 2.
x=2\sqrt{330}+37 x=37-2\sqrt{330}
The equation is now solved.
x^{2}-74x+49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-74x+49-49=-49
Subtract 49 from both sides of the equation.
x^{2}-74x=-49
Subtracting 49 from itself leaves 0.
x^{2}-74x+\left(-37\right)^{2}=-49+\left(-37\right)^{2}
Divide -74, the coefficient of the x term, by 2 to get -37. Then add the square of -37 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-74x+1369=-49+1369
Square -37.
x^{2}-74x+1369=1320
Add -49 to 1369.
\left(x-37\right)^{2}=1320
Factor x^{2}-74x+1369. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-37\right)^{2}}=\sqrt{1320}
Take the square root of both sides of the equation.
x-37=2\sqrt{330} x-37=-2\sqrt{330}
Simplify.
x=2\sqrt{330}+37 x=37-2\sqrt{330}
Add 37 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}