Solve for x
x = \frac{9 \sqrt{35} - 45}{2} \approx 4.122359024
x=\frac{-9\sqrt{35}-45}{2}\approx -49.122359024
Graph
Share
Copied to clipboard
x^{2}+45x-202.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{45^{2}-4\left(-202.5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 45 for b, and -202.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-202.5\right)}}{2}
Square 45.
x=\frac{-45±\sqrt{2025+810}}{2}
Multiply -4 times -202.5.
x=\frac{-45±\sqrt{2835}}{2}
Add 2025 to 810.
x=\frac{-45±9\sqrt{35}}{2}
Take the square root of 2835.
x=\frac{9\sqrt{35}-45}{2}
Now solve the equation x=\frac{-45±9\sqrt{35}}{2} when ± is plus. Add -45 to 9\sqrt{35}.
x=\frac{-9\sqrt{35}-45}{2}
Now solve the equation x=\frac{-45±9\sqrt{35}}{2} when ± is minus. Subtract 9\sqrt{35} from -45.
x=\frac{9\sqrt{35}-45}{2} x=\frac{-9\sqrt{35}-45}{2}
The equation is now solved.
x^{2}+45x-202.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+45x-202.5-\left(-202.5\right)=-\left(-202.5\right)
Add 202.5 to both sides of the equation.
x^{2}+45x=-\left(-202.5\right)
Subtracting -202.5 from itself leaves 0.
x^{2}+45x=202.5
Subtract -202.5 from 0.
x^{2}+45x+\left(\frac{45}{2}\right)^{2}=202.5+\left(\frac{45}{2}\right)^{2}
Divide 45, the coefficient of the x term, by 2 to get \frac{45}{2}. Then add the square of \frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+45x+\frac{2025}{4}=202.5+\frac{2025}{4}
Square \frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+45x+\frac{2025}{4}=\frac{2835}{4}
Add 202.5 to \frac{2025}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{45}{2}\right)^{2}=\frac{2835}{4}
Factor x^{2}+45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{45}{2}\right)^{2}}=\sqrt{\frac{2835}{4}}
Take the square root of both sides of the equation.
x+\frac{45}{2}=\frac{9\sqrt{35}}{2} x+\frac{45}{2}=-\frac{9\sqrt{35}}{2}
Simplify.
x=\frac{9\sqrt{35}-45}{2} x=\frac{-9\sqrt{35}-45}{2}
Subtract \frac{45}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}