Solve for x
x=-8
x=4
Graph
Share
Copied to clipboard
x^{2}+4x-25-7=0
Subtract 7 from both sides.
x^{2}+4x-32=0
Subtract 7 from -25 to get -32.
a+b=4 ab=-32
To solve the equation, factor x^{2}+4x-32 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,32 -2,16 -4,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -32.
-1+32=31 -2+16=14 -4+8=4
Calculate the sum for each pair.
a=-4 b=8
The solution is the pair that gives sum 4.
\left(x-4\right)\left(x+8\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=4 x=-8
To find equation solutions, solve x-4=0 and x+8=0.
x^{2}+4x-25-7=0
Subtract 7 from both sides.
x^{2}+4x-32=0
Subtract 7 from -25 to get -32.
a+b=4 ab=1\left(-32\right)=-32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-32. To find a and b, set up a system to be solved.
-1,32 -2,16 -4,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -32.
-1+32=31 -2+16=14 -4+8=4
Calculate the sum for each pair.
a=-4 b=8
The solution is the pair that gives sum 4.
\left(x^{2}-4x\right)+\left(8x-32\right)
Rewrite x^{2}+4x-32 as \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
Factor out x in the first and 8 in the second group.
\left(x-4\right)\left(x+8\right)
Factor out common term x-4 by using distributive property.
x=4 x=-8
To find equation solutions, solve x-4=0 and x+8=0.
x^{2}+4x-25=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+4x-25-7=7-7
Subtract 7 from both sides of the equation.
x^{2}+4x-25-7=0
Subtracting 7 from itself leaves 0.
x^{2}+4x-32=0
Subtract 7 from -25.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+128}}{2}
Multiply -4 times -32.
x=\frac{-4±\sqrt{144}}{2}
Add 16 to 128.
x=\frac{-4±12}{2}
Take the square root of 144.
x=\frac{8}{2}
Now solve the equation x=\frac{-4±12}{2} when ± is plus. Add -4 to 12.
x=4
Divide 8 by 2.
x=-\frac{16}{2}
Now solve the equation x=\frac{-4±12}{2} when ± is minus. Subtract 12 from -4.
x=-8
Divide -16 by 2.
x=4 x=-8
The equation is now solved.
x^{2}+4x-25=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4x-25-\left(-25\right)=7-\left(-25\right)
Add 25 to both sides of the equation.
x^{2}+4x=7-\left(-25\right)
Subtracting -25 from itself leaves 0.
x^{2}+4x=32
Subtract -25 from 7.
x^{2}+4x+2^{2}=32+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=32+4
Square 2.
x^{2}+4x+4=36
Add 32 to 4.
\left(x+2\right)^{2}=36
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x+2=6 x+2=-6
Simplify.
x=4 x=-8
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}