Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+4=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+4x+4-7=7-7
Subtract 7 from both sides of the equation.
x^{2}+4x+4-7=0
Subtracting 7 from itself leaves 0.
x^{2}+4x-3=0
Subtract 7 from 4.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-3\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+12}}{2}
Multiply -4 times -3.
x=\frac{-4±\sqrt{28}}{2}
Add 16 to 12.
x=\frac{-4±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{2\sqrt{7}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{2} when ± is plus. Add -4 to 2\sqrt{7}.
x=\sqrt{7}-2
Divide -4+2\sqrt{7} by 2.
x=\frac{-2\sqrt{7}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from -4.
x=-\sqrt{7}-2
Divide -4-2\sqrt{7} by 2.
x=\sqrt{7}-2 x=-\sqrt{7}-2
The equation is now solved.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.
x^{2}+4x+4=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+4x+4-7=7-7
Subtract 7 from both sides of the equation.
x^{2}+4x+4-7=0
Subtracting 7 from itself leaves 0.
x^{2}+4x-3=0
Subtract 7 from 4.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-3\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+12}}{2}
Multiply -4 times -3.
x=\frac{-4±\sqrt{28}}{2}
Add 16 to 12.
x=\frac{-4±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{2\sqrt{7}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{2} when ± is plus. Add -4 to 2\sqrt{7}.
x=\sqrt{7}-2
Divide -4+2\sqrt{7} by 2.
x=\frac{-2\sqrt{7}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from -4.
x=-\sqrt{7}-2
Divide -4-2\sqrt{7} by 2.
x=\sqrt{7}-2 x=-\sqrt{7}-2
The equation is now solved.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.