Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+3+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x+3}
Factor x^{2}-1.
\frac{\left(x^{2}+4x+3\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+4x+3 times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x^{2}+4x+3\right)\left(x-1\right)\left(x+1\right)+3}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x+3}
Since \frac{\left(x^{2}+4x+3\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{3}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{2}+4x^{3}-4x+3x^{2}-3+3}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x+3}
Do the multiplications in \left(x^{2}+4x+3\right)\left(x-1\right)\left(x+1\right)+3.
\frac{x^{4}+2x^{2}+4x^{3}-4x}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x+3}
Combine like terms in x^{4}-x^{2}+4x^{3}-4x+3x^{2}-3+3.
\frac{\left(x^{4}+2x^{2}+4x^{3}-4x\right)\left(x+3\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}-\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x+3 is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x^{4}+2x^{2}+4x^{3}-4x}{\left(x-1\right)\left(x+1\right)} times \frac{x+3}{x+3}. Multiply \frac{2}{x+3} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x^{4}+2x^{2}+4x^{3}-4x\right)\left(x+3\right)-2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x^{4}+2x^{2}+4x^{3}-4x\right)\left(x+3\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{5}+3x^{4}+2x^{3}+6x^{2}+4x^{4}+12x^{3}-4x^{2}-12x-2x^{2}-2x+2x+2}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x^{4}+2x^{2}+4x^{3}-4x\right)\left(x+3\right)-2\left(x-1\right)\left(x+1\right).
\frac{x^{5}+7x^{4}+14x^{3}-12x+2}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{5}+3x^{4}+2x^{3}+6x^{2}+4x^{4}+12x^{3}-4x^{2}-12x-2x^{2}-2x+2x+2.
\frac{x^{5}+7x^{4}+14x^{3}-12x+2}{x^{3}+3x^{2}-x-3}
Expand \left(x-1\right)\left(x+1\right)\left(x+3\right).