Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+64\left(1-\frac{x^{2}}{16}\right)=192
Multiply both sides of the equation by 16.
16x^{2}+64+64\left(-\frac{x^{2}}{16}\right)=192
Use the distributive property to multiply 64 by 1-\frac{x^{2}}{16}.
16x^{2}+64-4x^{2}=192
Cancel out 16, the greatest common factor in 64 and 16.
12x^{2}+64=192
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}=192-64
Subtract 64 from both sides.
12x^{2}=128
Subtract 64 from 192 to get 128.
x^{2}=\frac{128}{12}
Divide both sides by 12.
x^{2}=\frac{32}{3}
Reduce the fraction \frac{128}{12} to lowest terms by extracting and canceling out 4.
x=\frac{4\sqrt{6}}{3} x=-\frac{4\sqrt{6}}{3}
Take the square root of both sides of the equation.
16x^{2}+64\left(1-\frac{x^{2}}{16}\right)=192
Multiply both sides of the equation by 16.
16x^{2}+64+64\left(-\frac{x^{2}}{16}\right)=192
Use the distributive property to multiply 64 by 1-\frac{x^{2}}{16}.
16x^{2}+64-4x^{2}=192
Cancel out 16, the greatest common factor in 64 and 16.
12x^{2}+64=192
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}+64-192=0
Subtract 192 from both sides.
12x^{2}-128=0
Subtract 192 from 64 to get -128.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-128\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-128\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-128\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{6144}}{2\times 12}
Multiply -48 times -128.
x=\frac{0±32\sqrt{6}}{2\times 12}
Take the square root of 6144.
x=\frac{0±32\sqrt{6}}{24}
Multiply 2 times 12.
x=\frac{4\sqrt{6}}{3}
Now solve the equation x=\frac{0±32\sqrt{6}}{24} when ± is plus.
x=-\frac{4\sqrt{6}}{3}
Now solve the equation x=\frac{0±32\sqrt{6}}{24} when ± is minus.
x=\frac{4\sqrt{6}}{3} x=-\frac{4\sqrt{6}}{3}
The equation is now solved.