Solve for x (complex solution)
x=\frac{i\sqrt{2\left(\sqrt{36865}-1\right)}}{48}\approx 0.407186532i
x=-\frac{i\sqrt{2\left(\sqrt{36865}-1\right)}}{48}\approx -0-0.407186532i
x=-\frac{\sqrt{2\left(\sqrt{36865}+1\right)}}{48}\approx -0.409312818
x=\frac{\sqrt{2\left(\sqrt{36865}+1\right)}}{48}\approx 0.409312818
Solve for x
x=-\frac{\sqrt{2\left(\sqrt{36865}+1\right)}}{48}\approx -0.409312818
x=\frac{\sqrt{2\left(\sqrt{36865}+1\right)}}{48}\approx 0.409312818
Graph
Share
Copied to clipboard
x^{2}+16=\left(24x^{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}+16=24^{2}\left(x^{2}\right)^{2}
Expand \left(24x^{2}\right)^{2}.
x^{2}+16=24^{2}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+16=576x^{4}
Calculate 24 to the power of 2 and get 576.
x^{2}+16-576x^{4}=0
Subtract 576x^{4} from both sides.
-576t^{2}+t+16=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\left(-576\right)\times 16}}{-576\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -576 for a, 1 for b, and 16 for c in the quadratic formula.
t=\frac{-1±\sqrt{36865}}{-1152}
Do the calculations.
t=\frac{1-\sqrt{36865}}{1152} t=\frac{\sqrt{36865}+1}{1152}
Solve the equation t=\frac{-1±\sqrt{36865}}{-1152} when ± is plus and when ± is minus.
x=-i\sqrt{-\frac{1-\sqrt{36865}}{1152}} x=i\sqrt{-\frac{1-\sqrt{36865}}{1152}} x=-\sqrt{\frac{\sqrt{36865}+1}{1152}} x=\sqrt{\frac{\sqrt{36865}+1}{1152}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{2}+16=\left(24x^{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}+16=24^{2}\left(x^{2}\right)^{2}
Expand \left(24x^{2}\right)^{2}.
x^{2}+16=24^{2}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+16=576x^{4}
Calculate 24 to the power of 2 and get 576.
x^{2}+16-576x^{4}=0
Subtract 576x^{4} from both sides.
-576t^{2}+t+16=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\left(-576\right)\times 16}}{-576\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -576 for a, 1 for b, and 16 for c in the quadratic formula.
t=\frac{-1±\sqrt{36865}}{-1152}
Do the calculations.
t=\frac{1-\sqrt{36865}}{1152} t=\frac{\sqrt{36865}+1}{1152}
Solve the equation t=\frac{-1±\sqrt{36865}}{-1152} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{36865}+1}{32}}}{6} x=-\frac{\sqrt{\frac{\sqrt{36865}+1}{32}}}{6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}