Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+36x-1548=0
Multiply 86 and 18 to get 1548.
x=\frac{-36±\sqrt{36^{2}-4\left(-1548\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 36 for b, and -1548 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\left(-1548\right)}}{2}
Square 36.
x=\frac{-36±\sqrt{1296+6192}}{2}
Multiply -4 times -1548.
x=\frac{-36±\sqrt{7488}}{2}
Add 1296 to 6192.
x=\frac{-36±24\sqrt{13}}{2}
Take the square root of 7488.
x=\frac{24\sqrt{13}-36}{2}
Now solve the equation x=\frac{-36±24\sqrt{13}}{2} when ± is plus. Add -36 to 24\sqrt{13}.
x=12\sqrt{13}-18
Divide -36+24\sqrt{13} by 2.
x=\frac{-24\sqrt{13}-36}{2}
Now solve the equation x=\frac{-36±24\sqrt{13}}{2} when ± is minus. Subtract 24\sqrt{13} from -36.
x=-12\sqrt{13}-18
Divide -36-24\sqrt{13} by 2.
x=12\sqrt{13}-18 x=-12\sqrt{13}-18
The equation is now solved.
x^{2}+36x-1548=0
Multiply 86 and 18 to get 1548.
x^{2}+36x=1548
Add 1548 to both sides. Anything plus zero gives itself.
x^{2}+36x+18^{2}=1548+18^{2}
Divide 36, the coefficient of the x term, by 2 to get 18. Then add the square of 18 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+36x+324=1548+324
Square 18.
x^{2}+36x+324=1872
Add 1548 to 324.
\left(x+18\right)^{2}=1872
Factor x^{2}+36x+324. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+18\right)^{2}}=\sqrt{1872}
Take the square root of both sides of the equation.
x+18=12\sqrt{13} x+18=-12\sqrt{13}
Simplify.
x=12\sqrt{13}-18 x=-12\sqrt{13}-18
Subtract 18 from both sides of the equation.