Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+36x+240=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 1\times 240}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 36 for b, and 240 for c in the quadratic formula.
x=\frac{-36±4\sqrt{21}}{2}
Do the calculations.
x=2\sqrt{21}-18 x=-2\sqrt{21}-18
Solve the equation x=\frac{-36±4\sqrt{21}}{2} when ± is plus and when ± is minus.
\left(x-\left(2\sqrt{21}-18\right)\right)\left(x-\left(-2\sqrt{21}-18\right)\right)>0
Rewrite the inequality by using the obtained solutions.
x-\left(2\sqrt{21}-18\right)<0 x-\left(-2\sqrt{21}-18\right)<0
For the product to be positive, x-\left(2\sqrt{21}-18\right) and x-\left(-2\sqrt{21}-18\right) have to be both negative or both positive. Consider the case when x-\left(2\sqrt{21}-18\right) and x-\left(-2\sqrt{21}-18\right) are both negative.
x<-2\sqrt{21}-18
The solution satisfying both inequalities is x<-2\sqrt{21}-18.
x-\left(-2\sqrt{21}-18\right)>0 x-\left(2\sqrt{21}-18\right)>0
Consider the case when x-\left(2\sqrt{21}-18\right) and x-\left(-2\sqrt{21}-18\right) are both positive.
x>2\sqrt{21}-18
The solution satisfying both inequalities is x>2\sqrt{21}-18.
x<-2\sqrt{21}-18\text{; }x>2\sqrt{21}-18
The final solution is the union of the obtained solutions.