Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+3x-5x+6x^{2}-2x-3
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-2x+6x^{2}-2x-3
Combine 3x and -5x to get -2x.
3x^{2}-2x-2x-3
Combine -3x^{2} and 6x^{2} to get 3x^{2}.
3x^{2}-4x-3
Combine -2x and -2x to get -4x.
factor(-3x^{2}+3x-5x+6x^{2}-2x-3)
Combine x^{2} and -4x^{2} to get -3x^{2}.
factor(-3x^{2}-2x+6x^{2}-2x-3)
Combine 3x and -5x to get -2x.
factor(3x^{2}-2x-2x-3)
Combine -3x^{2} and 6x^{2} to get 3x^{2}.
factor(3x^{2}-4x-3)
Combine -2x and -2x to get -4x.
3x^{2}-4x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
Multiply -12 times -3.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
Add 16 to 36.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
Take the square root of 52.
x=\frac{4±2\sqrt{13}}{2\times 3}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{13}+4}{6}
Now solve the equation x=\frac{4±2\sqrt{13}}{6} when ± is plus. Add 4 to 2\sqrt{13}.
x=\frac{\sqrt{13}+2}{3}
Divide 4+2\sqrt{13} by 6.
x=\frac{4-2\sqrt{13}}{6}
Now solve the equation x=\frac{4±2\sqrt{13}}{6} when ± is minus. Subtract 2\sqrt{13} from 4.
x=\frac{2-\sqrt{13}}{3}
Divide 4-2\sqrt{13} by 6.
3x^{2}-4x-3=3\left(x-\frac{\sqrt{13}+2}{3}\right)\left(x-\frac{2-\sqrt{13}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2+\sqrt{13}}{3} for x_{1} and \frac{2-\sqrt{13}}{3} for x_{2}.