Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+3x+7x+12
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+10x+12
Combine 3x and 7x to get 10x.
factor(-3x^{2}+3x+7x+12)
Combine x^{2} and -4x^{2} to get -3x^{2}.
factor(-3x^{2}+10x+12)
Combine 3x and 7x to get 10x.
-3x^{2}+10x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square 10.
x=\frac{-10±\sqrt{100+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-10±\sqrt{100+144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{-10±\sqrt{244}}{2\left(-3\right)}
Add 100 to 144.
x=\frac{-10±2\sqrt{61}}{2\left(-3\right)}
Take the square root of 244.
x=\frac{-10±2\sqrt{61}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{61}-10}{-6}
Now solve the equation x=\frac{-10±2\sqrt{61}}{-6} when ± is plus. Add -10 to 2\sqrt{61}.
x=\frac{5-\sqrt{61}}{3}
Divide -10+2\sqrt{61} by -6.
x=\frac{-2\sqrt{61}-10}{-6}
Now solve the equation x=\frac{-10±2\sqrt{61}}{-6} when ± is minus. Subtract 2\sqrt{61} from -10.
x=\frac{\sqrt{61}+5}{3}
Divide -10-2\sqrt{61} by -6.
-3x^{2}+10x+12=-3\left(x-\frac{5-\sqrt{61}}{3}\right)\left(x-\frac{\sqrt{61}+5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5-\sqrt{61}}{3} for x_{1} and \frac{5+\sqrt{61}}{3} for x_{2}.