Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{10-3x-bx}{x-b}\text{, }&x\neq b\\a\in \mathrm{C}\text{, }&\left(x=2\text{ and }b=2\right)\text{ or }\left(x=-5\text{ and }b=-5\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{ax-3x+10}{x+a}\text{, }&x\neq -a\\b\in \mathrm{C}\text{, }&\left(x=2\text{ and }a=-2\right)\text{ or }\left(x=-5\text{ and }a=5\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{10-3x-bx}{x-b}\text{, }&x\neq b\\a\in \mathrm{R}\text{, }&\left(x=2\text{ and }b=2\right)\text{ or }\left(x=-5\text{ and }b=-5\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{ax-3x+10}{x+a}\text{, }&x\neq -a\\b\in \mathrm{R}\text{, }&\left(x=2\text{ and }a=-2\right)\text{ or }\left(x=-5\text{ and }a=5\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+3x-10=x^{2}-xb+ax-ab
Use the distributive property to multiply x+a by x-b.
x^{2}-xb+ax-ab=x^{2}+3x-10
Swap sides so that all variable terms are on the left hand side.
-xb+ax-ab=x^{2}+3x-10-x^{2}
Subtract x^{2} from both sides.
-xb+ax-ab=3x-10
Combine x^{2} and -x^{2} to get 0.
ax-ab=3x-10+xb
Add xb to both sides.
\left(x-b\right)a=3x-10+xb
Combine all terms containing a.
\left(x-b\right)a=bx+3x-10
The equation is in standard form.
\frac{\left(x-b\right)a}{x-b}=\frac{bx+3x-10}{x-b}
Divide both sides by x-b.
a=\frac{bx+3x-10}{x-b}
Dividing by x-b undoes the multiplication by x-b.
x^{2}+3x-10=x^{2}-xb+ax-ab
Use the distributive property to multiply x+a by x-b.
x^{2}-xb+ax-ab=x^{2}+3x-10
Swap sides so that all variable terms are on the left hand side.
-xb+ax-ab=x^{2}+3x-10-x^{2}
Subtract x^{2} from both sides.
-xb+ax-ab=3x-10
Combine x^{2} and -x^{2} to get 0.
-xb-ab=3x-10-ax
Subtract ax from both sides.
\left(-x-a\right)b=3x-10-ax
Combine all terms containing b.
\left(-x-a\right)b=-ax+3x-10
The equation is in standard form.
\frac{\left(-x-a\right)b}{-x-a}=\frac{-ax+3x-10}{-x-a}
Divide both sides by -x-a.
b=\frac{-ax+3x-10}{-x-a}
Dividing by -x-a undoes the multiplication by -x-a.
b=-\frac{-ax+3x-10}{x+a}
Divide -xa-10+3x by -x-a.
x^{2}+3x-10=x^{2}-xb+ax-ab
Use the distributive property to multiply x+a by x-b.
x^{2}-xb+ax-ab=x^{2}+3x-10
Swap sides so that all variable terms are on the left hand side.
-xb+ax-ab=x^{2}+3x-10-x^{2}
Subtract x^{2} from both sides.
-xb+ax-ab=3x-10
Combine x^{2} and -x^{2} to get 0.
ax-ab=3x-10+xb
Add xb to both sides.
\left(x-b\right)a=3x-10+xb
Combine all terms containing a.
\left(x-b\right)a=bx+3x-10
The equation is in standard form.
\frac{\left(x-b\right)a}{x-b}=\frac{bx+3x-10}{x-b}
Divide both sides by x-b.
a=\frac{bx+3x-10}{x-b}
Dividing by x-b undoes the multiplication by x-b.
x^{2}+3x-10=x^{2}-xb+ax-ab
Use the distributive property to multiply x+a by x-b.
x^{2}-xb+ax-ab=x^{2}+3x-10
Swap sides so that all variable terms are on the left hand side.
-xb+ax-ab=x^{2}+3x-10-x^{2}
Subtract x^{2} from both sides.
-xb+ax-ab=3x-10
Combine x^{2} and -x^{2} to get 0.
-xb-ab=3x-10-ax
Subtract ax from both sides.
\left(-x-a\right)b=3x-10-ax
Combine all terms containing b.
\left(-x-a\right)b=-ax+3x-10
The equation is in standard form.
\frac{\left(-x-a\right)b}{-x-a}=\frac{-ax+3x-10}{-x-a}
Divide both sides by -x-a.
b=\frac{-ax+3x-10}{-x-a}
Dividing by -x-a undoes the multiplication by -x-a.
b=-\frac{-ax+3x-10}{x+a}
Divide 3x-10-ax by -x-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}