Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x-1=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+3x-1-15=15-15
Subtract 15 from both sides of the equation.
x^{2}+3x-1-15=0
Subtracting 15 from itself leaves 0.
x^{2}+3x-16=0
Subtract 15 from -1.
x=\frac{-3±\sqrt{3^{2}-4\left(-16\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-16\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+64}}{2}
Multiply -4 times -16.
x=\frac{-3±\sqrt{73}}{2}
Add 9 to 64.
x=\frac{\sqrt{73}-3}{2}
Now solve the equation x=\frac{-3±\sqrt{73}}{2} when ± is plus. Add -3 to \sqrt{73}.
x=\frac{-\sqrt{73}-3}{2}
Now solve the equation x=\frac{-3±\sqrt{73}}{2} when ± is minus. Subtract \sqrt{73} from -3.
x=\frac{\sqrt{73}-3}{2} x=\frac{-\sqrt{73}-3}{2}
The equation is now solved.
x^{2}+3x-1=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+3x-1-\left(-1\right)=15-\left(-1\right)
Add 1 to both sides of the equation.
x^{2}+3x=15-\left(-1\right)
Subtracting -1 from itself leaves 0.
x^{2}+3x=16
Subtract -1 from 15.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=16+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=16+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{73}{4}
Add 16 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{73}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{73}}{2} x+\frac{3}{2}=-\frac{\sqrt{73}}{2}
Simplify.
x=\frac{\sqrt{73}-3}{2} x=\frac{-\sqrt{73}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.