Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x=0+20+x
Anything times zero gives zero.
x^{2}+3x=20+x
Add 0 and 20 to get 20.
x^{2}+3x-20=x
Subtract 20 from both sides.
x^{2}+3x-20-x=0
Subtract x from both sides.
x^{2}+2x-20=0
Combine 3x and -x to get 2x.
x=\frac{-2±\sqrt{2^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-20\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+80}}{2}
Multiply -4 times -20.
x=\frac{-2±\sqrt{84}}{2}
Add 4 to 80.
x=\frac{-2±2\sqrt{21}}{2}
Take the square root of 84.
x=\frac{2\sqrt{21}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{21}}{2} when ± is plus. Add -2 to 2\sqrt{21}.
x=\sqrt{21}-1
Divide -2+2\sqrt{21} by 2.
x=\frac{-2\sqrt{21}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{21}}{2} when ± is minus. Subtract 2\sqrt{21} from -2.
x=-\sqrt{21}-1
Divide -2-2\sqrt{21} by 2.
x=\sqrt{21}-1 x=-\sqrt{21}-1
The equation is now solved.
x^{2}+3x=0+20+x
Anything times zero gives zero.
x^{2}+3x=20+x
Add 0 and 20 to get 20.
x^{2}+3x-x=20
Subtract x from both sides.
x^{2}+2x=20
Combine 3x and -x to get 2x.
x^{2}+2x+1^{2}=20+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=20+1
Square 1.
x^{2}+2x+1=21
Add 20 to 1.
\left(x+1\right)^{2}=21
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x+1=\sqrt{21} x+1=-\sqrt{21}
Simplify.
x=\sqrt{21}-1 x=-\sqrt{21}-1
Subtract 1 from both sides of the equation.
x^{2}+3x=0+20+x
Anything times zero gives zero.
x^{2}+3x=20+x
Add 0 and 20 to get 20.
x^{2}+3x-20=x
Subtract 20 from both sides.
x^{2}+3x-20-x=0
Subtract x from both sides.
x^{2}+2x-20=0
Combine 3x and -x to get 2x.
x=\frac{-2±\sqrt{2^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-20\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+80}}{2}
Multiply -4 times -20.
x=\frac{-2±\sqrt{84}}{2}
Add 4 to 80.
x=\frac{-2±2\sqrt{21}}{2}
Take the square root of 84.
x=\frac{2\sqrt{21}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{21}}{2} when ± is plus. Add -2 to 2\sqrt{21}.
x=\sqrt{21}-1
Divide -2+2\sqrt{21} by 2.
x=\frac{-2\sqrt{21}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{21}}{2} when ± is minus. Subtract 2\sqrt{21} from -2.
x=-\sqrt{21}-1
Divide -2-2\sqrt{21} by 2.
x=\sqrt{21}-1 x=-\sqrt{21}-1
The equation is now solved.
x^{2}+3x=0+20+x
Anything times zero gives zero.
x^{2}+3x=20+x
Add 0 and 20 to get 20.
x^{2}+3x-x=20
Subtract x from both sides.
x^{2}+2x=20
Combine 3x and -x to get 2x.
x^{2}+2x+1^{2}=20+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=20+1
Square 1.
x^{2}+2x+1=21
Add 20 to 1.
\left(x+1\right)^{2}=21
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x+1=\sqrt{21} x+1=-\sqrt{21}
Simplify.
x=\sqrt{21}-1 x=-\sqrt{21}-1
Subtract 1 from both sides of the equation.