Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x+21-32=6x
Subtract 32 from both sides.
x^{2}+3x-11=6x
Subtract 32 from 21 to get -11.
x^{2}+3x-11-6x=0
Subtract 6x from both sides.
x^{2}-3x-11=0
Combine 3x and -6x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-11\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+44}}{2}
Multiply -4 times -11.
x=\frac{-\left(-3\right)±\sqrt{53}}{2}
Add 9 to 44.
x=\frac{3±\sqrt{53}}{2}
The opposite of -3 is 3.
x=\frac{\sqrt{53}+3}{2}
Now solve the equation x=\frac{3±\sqrt{53}}{2} when ± is plus. Add 3 to \sqrt{53}.
x=\frac{3-\sqrt{53}}{2}
Now solve the equation x=\frac{3±\sqrt{53}}{2} when ± is minus. Subtract \sqrt{53} from 3.
x=\frac{\sqrt{53}+3}{2} x=\frac{3-\sqrt{53}}{2}
The equation is now solved.
x^{2}+3x+21-6x=32
Subtract 6x from both sides.
x^{2}-3x+21=32
Combine 3x and -6x to get -3x.
x^{2}-3x=32-21
Subtract 21 from both sides.
x^{2}-3x=11
Subtract 21 from 32 to get 11.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=11+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=11+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{53}{4}
Add 11 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{53}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{53}}{2} x-\frac{3}{2}=-\frac{\sqrt{53}}{2}
Simplify.
x=\frac{\sqrt{53}+3}{2} x=\frac{3-\sqrt{53}}{2}
Add \frac{3}{2} to both sides of the equation.