Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x+\frac{5}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2}
Square 3.
x=\frac{-3±\sqrt{9-5}}{2}
Multiply -4 times \frac{5}{4}.
x=\frac{-3±\sqrt{4}}{2}
Add 9 to -5.
x=\frac{-3±2}{2}
Take the square root of 4.
x=-\frac{1}{2}
Now solve the equation x=\frac{-3±2}{2} when ± is plus. Add -3 to 2.
x=-\frac{5}{2}
Now solve the equation x=\frac{-3±2}{2} when ± is minus. Subtract 2 from -3.
x=-\frac{1}{2} x=-\frac{5}{2}
The equation is now solved.
x^{2}+3x+\frac{5}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+3x+\frac{5}{4}-\frac{5}{4}=-\frac{5}{4}
Subtract \frac{5}{4} from both sides of the equation.
x^{2}+3x=-\frac{5}{4}
Subtracting \frac{5}{4} from itself leaves 0.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{-5+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=1
Add -\frac{5}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=1
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+\frac{3}{2}=1 x+\frac{3}{2}=-1
Simplify.
x=-\frac{1}{2} x=-\frac{5}{2}
Subtract \frac{3}{2} from both sides of the equation.