Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3-8x=0
Subtract 8x from both sides.
x^{2}-8x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-8\right)±\sqrt{52}}{2}
Add 64 to -12.
x=\frac{-\left(-8\right)±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{8±2\sqrt{13}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{13}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{13}}{2} when ± is plus. Add 8 to 2\sqrt{13}.
x=\sqrt{13}+4
Divide 8+2\sqrt{13} by 2.
x=\frac{8-2\sqrt{13}}{2}
Now solve the equation x=\frac{8±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from 8.
x=4-\sqrt{13}
Divide 8-2\sqrt{13} by 2.
x=\sqrt{13}+4 x=4-\sqrt{13}
The equation is now solved.
x^{2}+3-8x=0
Subtract 8x from both sides.
x^{2}-8x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}-8x+\left(-4\right)^{2}=-3+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-3+16
Square -4.
x^{2}-8x+16=13
Add -3 to 16.
\left(x-4\right)^{2}=13
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-4=\sqrt{13} x-4=-\sqrt{13}
Simplify.
x=\sqrt{13}+4 x=4-\sqrt{13}
Add 4 to both sides of the equation.