Solve for b
b=-\frac{\left(2+p-y-x\right)\left(x+y+p\right)}{2}
Solve for p (complex solution)
p=-\sqrt{x^{2}+2xy-2x+y^{2}-2y-2b+1}-1
p=\sqrt{x^{2}+2xy-2x+y^{2}-2y-2b+1}-1
Solve for p
p=-\sqrt{x^{2}+2xy-2x+y^{2}-2y-2b+1}-1
p=\sqrt{x^{2}+2xy-2x+y^{2}-2y-2b+1}-1\text{, }b\leq xy+\frac{\left(x-1\right)^{2}}{2}+\frac{y^{2}}{2}-y
Graph
Quiz
Algebra
5 problems similar to:
x ^ { 2 } + 2 x y + y ^ { 2 } - p ^ { 2 } = 2 [ ( x + y + p ) + b ]
Share
Copied to clipboard
x^{2}+2xy+y^{2}-p^{2}=2x+2y+2p+2b
Use the distributive property to multiply 2 by x+y+p+b.
2x+2y+2p+2b=x^{2}+2xy+y^{2}-p^{2}
Swap sides so that all variable terms are on the left hand side.
2y+2p+2b=x^{2}+2xy+y^{2}-p^{2}-2x
Subtract 2x from both sides.
2p+2b=x^{2}+2xy+y^{2}-p^{2}-2x-2y
Subtract 2y from both sides.
2b=x^{2}+2xy+y^{2}-p^{2}-2x-2y-2p
Subtract 2p from both sides.
2b=x^{2}+2xy-2x+y^{2}-2y-p^{2}-2p
The equation is in standard form.
\frac{2b}{2}=\frac{\left(x+y-p-2\right)\left(x+y+p\right)}{2}
Divide both sides by 2.
b=\frac{\left(x+y-p-2\right)\left(x+y+p\right)}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}