Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x-6=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+2x-6-4=4-4
Subtract 4 from both sides of the equation.
x^{2}+2x-6-4=0
Subtracting 4 from itself leaves 0.
x^{2}+2x-10=0
Subtract 4 from -6.
x=\frac{-2±\sqrt{2^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-10\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+40}}{2}
Multiply -4 times -10.
x=\frac{-2±\sqrt{44}}{2}
Add 4 to 40.
x=\frac{-2±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{11}}{2} when ± is plus. Add -2 to 2\sqrt{11}.
x=\sqrt{11}-1
Divide -2+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -2.
x=-\sqrt{11}-1
Divide -2-2\sqrt{11} by 2.
x=\sqrt{11}-1 x=-\sqrt{11}-1
The equation is now solved.
x^{2}+2x-6=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x-6-\left(-6\right)=4-\left(-6\right)
Add 6 to both sides of the equation.
x^{2}+2x=4-\left(-6\right)
Subtracting -6 from itself leaves 0.
x^{2}+2x=10
Subtract -6 from 4.
x^{2}+2x+1^{2}=10+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=10+1
Square 1.
x^{2}+2x+1=11
Add 10 to 1.
\left(x+1\right)^{2}=11
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+1=\sqrt{11} x+1=-\sqrt{11}
Simplify.
x=\sqrt{11}-1 x=-\sqrt{11}-1
Subtract 1 from both sides of the equation.
x^{2}+2x-6=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+2x-6-4=4-4
Subtract 4 from both sides of the equation.
x^{2}+2x-6-4=0
Subtracting 4 from itself leaves 0.
x^{2}+2x-10=0
Subtract 4 from -6.
x=\frac{-2±\sqrt{2^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-10\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+40}}{2}
Multiply -4 times -10.
x=\frac{-2±\sqrt{44}}{2}
Add 4 to 40.
x=\frac{-2±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{11}}{2} when ± is plus. Add -2 to 2\sqrt{11}.
x=\sqrt{11}-1
Divide -2+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -2.
x=-\sqrt{11}-1
Divide -2-2\sqrt{11} by 2.
x=\sqrt{11}-1 x=-\sqrt{11}-1
The equation is now solved.
x^{2}+2x-6=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x-6-\left(-6\right)=4-\left(-6\right)
Add 6 to both sides of the equation.
x^{2}+2x=4-\left(-6\right)
Subtracting -6 from itself leaves 0.
x^{2}+2x=10
Subtract -6 from 4.
x^{2}+2x+1^{2}=10+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=10+1
Square 1.
x^{2}+2x+1=11
Add 10 to 1.
\left(x+1\right)^{2}=11
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+1=\sqrt{11} x+1=-\sqrt{11}
Simplify.
x=\sqrt{11}-1 x=-\sqrt{11}-1
Subtract 1 from both sides of the equation.